Nanobiosensor Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea.
Department of Physics, Korea University, Seoul 02841, Republic of Korea.
ACS Appl Mater Interfaces. 2022 Aug 31;14(34):38459-38470. doi: 10.1021/acsami.2c07497. Epub 2022 Aug 11.
To prevent the ongoing spread of the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accurate and early detection based on a rapid, ultrasensitive, and highly reliable sensing method is crucially important. Here, we present a bumpy core-shell surface-enhanced Raman spectroscopy (SERS) nanoprobe-based sensing platform with single-nanoparticle (SNP)-based digital SERS analysis. The tailorable bumpy core-shell SERS nanoprobe with an internal self-assembled monolayer of 4-nitrobenzenethiol Raman reporters, synthesized using HEPES biological buffer, generates a strong, uniform, and reproducible SERS signal with an SNP-level sensitive and narrowly distributed enhancement factor (2.1 × 10 to 2.2 × 10). We also propose an SNP-based digital SERS analysis method that provides direct visualization of SNP detection at ultralow concentrations and reliable quantification over a wide range of concentrations. The bumpy core-shell SERS nanoprobe-based sensing platform with SNP-based digital SERS analysis achieves the ultrasensitive and quantitative detection of the SARS-CoV-2 spike protein with a limit of detection of 7.1 × 10 M over a wide dynamic range from 3.7 × 10 to 3.7 × 10 M, far outperforming the conventional enzyme-linked immunosorbent assay method for the target protein. Furthermore, it can detect mutated spike proteins from the SARS-CoV-2 variants, representing the key mutations of Alpha, Beta, Gamma, Delta, and Omicron variants. Therefore, this sensing platform can be effectively and efficiently used for the accurate and early detection of SARS-CoV-2 and be adapted for the ultrasensitive and reliable detection of other highly infectious diseases.
为了防止高传染性的严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)的持续传播,基于快速、超灵敏和高度可靠的感测方法的准确和早期检测至关重要。在这里,我们提出了一种基于凹凸核壳表面增强拉曼光谱(SERS)纳米探针的传感平台,具有基于单纳米颗粒(SNP)的数字 SERS 分析。可调节的凹凸核壳 SERS 纳米探针,内部自组装有 4-巯基苯硫酚拉曼报告分子的单层,使用 HEPES 生物缓冲液合成,可产生具有 SNP 级敏感和窄分布增强因子(2.1×10 至 2.2×10)的强、均匀和可重复的 SERS 信号。我们还提出了一种 SNP 基数字 SERS 分析方法,该方法可在超低浓度下直接可视化 SNP 检测,并在广泛的浓度范围内提供可靠的定量。基于 SNP 的数字 SERS 分析的凹凸核壳 SERS 纳米探针传感平台实现了对 SARS-CoV-2 刺突蛋白的超灵敏和定量检测,在从 3.7×10 到 3.7×10 M 的宽动态范围内,检测限为 7.1×10 M,远远超过了针对目标蛋白的常规酶联免疫吸附测定方法。此外,它可以检测来自 SARS-CoV-2 变体的突变刺突蛋白,代表 Alpha、Beta、Gamma、Delta 和 Omicron 变体的关键突变。因此,这种传感平台可有效地用于 SARS-CoV-2 的准确和早期检测,并可适应于其他高传染性疾病的超灵敏和可靠检测。