Suppr超能文献

AC-Faster R-CNN:一种改进的检测架构,用于提高脊柱 X 射线图像中异常的精度和灵敏度。

AC-Faster R-CNN: an improved detection architecture with high precision and sensitivity for abnormality in spine x-ray images.

机构信息

College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China.

Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Changsha 410000, People's Republic of China.

出版信息

Phys Med Biol. 2023 Sep 26;68(19). doi: 10.1088/1361-6560/acf7a8.

Abstract

In clinical medicine, localization and identification of disease on spinal radiographs are difficult and require a high level of expertise in the radiological discipline and extensive clinical experience. The model based on deep learning acquires certain disease recognition abilities through continuous training, thereby assisting clinical physicians in disease diagnosis. This study aims to develop an object detection network that accurately locates and classifies the abnormal parts in spinal x-ray photographs.This study proposes a deep learning-based automated multi-disease detection architecture called Abnormality Capture-Faster Region-based Convolutional Neural Network (AC-Faster R-CNN), which develops the feature fusion structure Deformable Convolution Feature Pyramid Network and the abnormality capture structure Abnormality Capture Head. Through the combination of dilated and deformable convolutions, the model better captures the multi-scale information of lesions. To further improve the detection performance, the contrast enhancement algorithm Contrast Limited Adaptive Histogram Equalization is used for image preprocessing.The proposed model is extensively evaluated on a testing set containing 1007 spine x-ray images and the experimental results show that the AC-Faster R-CNN architecture outperforms the baseline model and other advanced detection architectures. The mean Average Precision at Intersection over Union of 50% are 39.8%, the Precision and Sensitivity at the optimal cutoff point of Precision-Recall curve are 48.6% and 46.3%, respectively, reaching the current state-of-the-art detection level.AC-Faster R-CNN exhibits high precision and sensitivity in abnormality detection tasks of spinal x-ray images, and effectively locates and identifies abnormal areas. Additionally, this study would provide reference and comparison for the further development of medical automatic detection.

摘要

在临床医学中,对脊柱 X 光片上的疾病进行定位和识别非常困难,需要放射学专业的高度专业知识和广泛的临床经验。基于深度学习的模型通过不断训练获得某些疾病识别能力,从而协助临床医生进行疾病诊断。本研究旨在开发一种物体检测网络,该网络可以准确地定位和分类脊柱 X 光照片中的异常部位。

本研究提出了一种基于深度学习的自动多病种检测架构,称为异常捕捉 - Faster R-CNN(AC-Faster R-CNN),该架构开发了变形卷积特征金字塔网络和异常捕捉结构异常捕捉头的特征融合结构。通过膨胀卷积和变形卷积的结合,该模型更好地捕捉了病变的多尺度信息。为了进一步提高检测性能,使用对比度增强算法对比度受限自适应直方图均衡化进行图像预处理。

在包含 1007 张脊柱 X 光图像的测试集上对所提出的模型进行了广泛评估,实验结果表明,AC-Faster R-CNN 架构优于基线模型和其他先进的检测架构。在 Precision-Recall 曲线的最优截断点处,平均精度(mAP)为 50%的精度和敏感度分别为 48.6%和 46.3%,达到了当前的检测水平。

AC-Faster R-CNN 在脊柱 X 光图像的异常检测任务中表现出高精度和高敏感度,能够有效定位和识别异常区域。此外,本研究为医学自动检测的进一步发展提供了参考和比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验