Sani Md Nasir Hossain, Amin Mehedi, Siddique Abu Bakar, Nasif Saifullah Omar, Ghaley Bhim Bahadur, Ge Liya, Wang Feng, Yong Jean Wan Hong
Department of Biosystems and Technology, Swedish University of Agricultural Sciences (SLU), 234 56 Alnarp, Sweden.
Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh.
Sci Total Environ. 2023 Dec 20;905:166881. doi: 10.1016/j.scitotenv.2023.166881. Epub 2023 Sep 7.
The greatest challenge for the agriculture sector in the twenty-first century is to increase agricultural production to feed the burgeoning global population while maintaining soil health and the integrity of the agroecosystem. Currently, the application of biochar is widely implemented as an effective means for boosting sustainable agriculture while having a negligible influence on ecosystems and the environment. In comparison to traditional biochar, nano-biochar (nano-BC) boasts enhanced specific surface area, adsorption capacity, and mobility properties within soil, allowing it to promote soil properties, crop growth, and environmental remediation. Additionally, carbon sequestration and reduction of methane and nitrous oxide emissions from agriculture can be achieved with nano-BC applications, contributing to climate change mitigation. Nonetheless, due to cost-effectiveness, sustainability, and environmental friendliness, waste-derived nano-BC may emerge as the most viable alternative to conventional waste management strategies, contributing to the circular bioeconomy and the broader goal of achieving the Sustainable Development Goals (SDGs). However, it's important to note that research on nano-BC is still in its nascent stages. Potential risks, including toxicity in aquatic and terrestrial environments, necessitate extensive field investigations. This review delineates the potential of waste-derived nano-BC for sustainable agriculture and environmental applications, outlining current advancements, challenges, and possibilities in the realms from a sustainability and circular bioeconomy standpoint.
21世纪农业部门面临的最大挑战是在保持土壤健康和农业生态系统完整性的同时,提高农业产量以养活迅速增长的全球人口。目前,生物炭的应用已被广泛采用,作为促进可持续农业发展的有效手段,同时对生态系统和环境的影响可忽略不计。与传统生物炭相比,纳米生物炭(nano - BC)具有更大的比表面积、吸附能力以及在土壤中的迁移特性,能够改善土壤性质、促进作物生长并进行环境修复。此外,应用纳米生物炭还可以实现农业碳固存以及减少甲烷和氧化亚氮排放,有助于缓解气候变化。尽管如此,出于成本效益、可持续性和环境友好性考虑,源自废弃物的纳米生物炭可能成为传统废弃物管理策略中最可行的替代方案,为循环生物经济以及实现可持续发展目标(SDGs)这一更广泛目标做出贡献。然而,需要注意的是,关于纳米生物炭的研究仍处于起步阶段。包括在水生和陆地环境中的毒性在内的潜在风险,需要进行广泛的实地调查。本综述从可持续性和循环生物经济的角度,阐述了源自废弃物的纳米生物炭在可持续农业和环境应用方面的潜力,概述了当前在这些领域的进展、挑战和可能性。