Université de Lille, Institut d'Electronique Microelectronique et Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, 59652 Villeneuve d'Ascq, France.
University of Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Électronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France.
J Mol Biol. 2023 Oct 15;435(20):168263. doi: 10.1016/j.jmb.2023.168263. Epub 2023 Sep 9.
Chromatin in the nucleus undergoes mechanical stresses from different sources during the various stages of cell life. Here a trinucleosome array is used as the minimal model to study the mechanical response to applied stress at the molecular level. By using large-scale, all-atom steered-molecular dynamics simulations, we show that the largest part of mechanical stress in compression is accommodated by the DNA linkers joining pairs of nucleosomes, which store the elastic energy accumulated by the applied force. Different mechanical instabilities (Euler bending, Brazier kinking, twist-bending) can deform the DNA canonical structure, as a function of the increasing force load. An important role of the histone tails in assisting the DNA deformation is highlighted. The overall response of the smallest chromatin fragment to compressive stress leaves the nucleosome assembly with a substantial plastic deformation and localised defects, which can have a potential impact on DNA transcription, downstream signaling pathways, the regulation of gene expression, and DNA repair.
核内染色质在细胞生命的各个阶段会受到来自不同来源的机械应力。在这里,使用三聚体核小体阵列作为最小模型,在分子水平上研究对施加的应力的机械响应。通过使用大规模的、全原子引导的分子动力学模拟,我们表明,在压缩过程中机械应力的大部分是由连接核小体对的 DNA 连接体来承受的,这些连接体储存了由施加力累积的弹性能。不同的力学不稳定性(欧拉弯曲、Brazier 扭结、扭曲弯曲)可以使 DNA 标准结构变形,这是作用力增加的函数。组蛋白尾巴在辅助 DNA 变形方面发挥了重要作用。最小染色质片段对压缩应力的整体响应使核小体组装产生了大量的塑性变形和局部缺陷,这可能对 DNA 转录、下游信号通路、基因表达的调控和 DNA 修复产生潜在影响。