Suppr超能文献

双核小体阵列中的扭曲传播。

Twist propagation in dinucleosome arrays.

机构信息

Department of NanoEngineering, University of California at San Diego, La Jolla, CA, USA.

出版信息

Biophys J. 2010 Nov 17;99(10):3355-64. doi: 10.1016/j.bpj.2010.09.055.

Abstract

We present a Monte Carlo simulation study of the distribution and propagation of twist from one DNA linker to another for a two-nucleosome array subjected to externally applied twist. A mesoscopic model of the array that incorporates nucleosome geometry along with the bending and twisting mechanics of the linkers is employed and external twist is applied in stepwise increments to mimic quasistatic twisting of chromatin fibers. Simulation results reveal that the magnitude and sign of the imposed and induced twist on contiguous linkers depend strongly on their relative orientation. Remarkably, the relative direction of the induced and applied twist can become inverted for a subset of linker orientations-a phenomenon we refer to as "twist inversion". We characterize the twist inversion, as a function of relative linker orientation, in a phase diagram and explain its key features using a simple model based on the geometry of the nucleosome/linker complex. In addition to twist inversion, our simulations reveal "nucleosome flipping", whereby nucleosomes may undergo sudden flipping in response to applied twist, causing a rapid bending of the linker and a significant change in the overall twist and writhe of the array. Our findings shed light on the underlying mechanisms by which torsional stresses impact chromatin organization.

摘要

我们进行了一项蒙特卡罗模拟研究,探讨了在外加扭转力作用下,两个核小体阵列中一个 DNA 连接子的扭曲分布和传播。采用了一种介观模型来模拟该阵列,该模型结合了核小体的几何形状以及连接子的弯曲和扭曲力学特性,并采用逐步递增的方式施加外部扭转力,以模拟染色质纤维的准静态扭曲。模拟结果表明,施加在连续连接子上的施加扭转和诱导扭转的幅度和符号强烈依赖于它们的相对取向。值得注意的是,对于一部分连接子取向,诱导扭转和施加扭转的相对方向可能会发生反转——我们称之为“扭转反转”。我们在相图中对扭转反转进行了特征描述,并使用基于核小体/连接子复合物几何形状的简单模型来解释其主要特征。除了扭转反转之外,我们的模拟还揭示了“核小体翻转”现象,即核小体可能会对施加的扭转做出突然翻转,导致连接子的快速弯曲以及整个阵列的总扭转和缠绕的显著变化。我们的研究结果揭示了扭转力如何影响染色质组织的潜在机制。

相似文献

1
Twist propagation in dinucleosome arrays.
Biophys J. 2010 Nov 17;99(10):3355-64. doi: 10.1016/j.bpj.2010.09.055.
2
A critical role for linker DNA in higher-order folding of chromatin fibers.
Nucleic Acids Res. 2021 Mar 18;49(5):2537-2551. doi: 10.1093/nar/gkab058.
3
Free-energy landscape of mono- and dinucleosomes: Enhanced rotational flexibility of interconnected nucleosomes.
Phys Rev E. 2016 Mar;93(3):032406. doi: 10.1103/PhysRevE.93.032406. Epub 2016 Mar 10.
4
Changing chromatin fiber conformation by nucleosome repositioning.
Biophys J. 2014 Nov 4;107(9):2141-50. doi: 10.1016/j.bpj.2014.09.026.
5
Nucleosome Array Deformation in Chromatin is Sustained by Bending, Twisting and Kinking of Linker DNA.
J Mol Biol. 2023 Oct 15;435(20):168263. doi: 10.1016/j.jmb.2023.168263. Epub 2023 Sep 9.
6
Regulation of chromatin folding by conformational variations of nucleosome linker DNA.
Nucleic Acids Res. 2017 Sep 19;45(16):9372-9387. doi: 10.1093/nar/gkx562.
7
Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes.
Nucleic Acids Res. 2014 Sep;42(15):9691-9. doi: 10.1093/nar/gku694. Epub 2014 Aug 6.
8
Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
Biophys J. 2008 Oct;95(8):3692-705. doi: 10.1529/biophysj.107.121079. Epub 2008 Jan 22.
9
Twist constraints on linker DNA in the 30-nm chromatin fiber: implications for nucleosome phasing.
Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9364-8. doi: 10.1073/pnas.90.20.9364.
10
Nucleosome spacing periodically modulates nucleosome chain folding and DNA topology in circular nucleosome arrays.
J Biol Chem. 2019 Mar 15;294(11):4233-4246. doi: 10.1074/jbc.RA118.006412. Epub 2019 Jan 10.

引用本文的文献

1
Endogenous single-strand DNA breaks at RNA polymerase II promoters in Saccharomyces cerevisiae.
Nucleic Acids Res. 2018 Nov 16;46(20):10649-10668. doi: 10.1093/nar/gky743.
2
Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes.
Nucleic Acids Res. 2014 Sep;42(15):9691-9. doi: 10.1093/nar/gku694. Epub 2014 Aug 6.
3
Dynamics of forced nucleosome unraveling and role of nonuniform histone-DNA interactions.
Biophys J. 2012 Sep 5;103(5):989-98. doi: 10.1016/j.bpj.2012.07.043.

本文引用的文献

1
Anharmonic torsional stiffness of DNA revealed under small external torques.
Phys Rev Lett. 2010 Jul 2;105(1):018102. doi: 10.1103/PhysRevLett.105.018102. Epub 2010 Jun 29.
2
Chromatin fiber dynamics under tension and torsion.
Int J Mol Sci. 2010 Apr 12;11(4):1557-79. doi: 10.3390/ijms11041557.
3
Origins of specificity in protein-DNA recognition.
Annu Rev Biochem. 2010;79:233-69. doi: 10.1146/annurev-biochem-060408-091030.
4
Biophysics of knotting.
Annu Rev Biophys. 2010;39:349-66. doi: 10.1146/annurev.biophys.093008.131412.
5
Nucleosome assembly depends on the torsion in the DNA molecule: a magnetic tweezers study.
Biophys J. 2009 Dec 16;97(12):3150-7. doi: 10.1016/j.bpj.2009.09.032.
6
DNA topoisomerase II and its growing repertoire of biological functions.
Nat Rev Cancer. 2009 May;9(5):327-37. doi: 10.1038/nrc2608. Epub 2009 Apr 20.
7
Magnetic tweezers measurement of single molecule torque.
Nano Lett. 2009 Apr;9(4):1720-5. doi: 10.1021/nl900631w.
8
DNA topoisomerases: harnessing and constraining energy to govern chromosome topology.
Q Rev Biophys. 2008 Feb;41(1):41-101. doi: 10.1017/S003358350800468X.
9
DNA torsional stress propagates through chromatin fiber and participates in transcriptional regulation.
Nat Struct Mol Biol. 2008 Feb;15(2):123-5. doi: 10.1038/nsmb0208-123.
10
The functional response of upstream DNA to dynamic supercoiling in vivo.
Nat Struct Mol Biol. 2008 Feb;15(2):146-54. doi: 10.1038/nsmb.1372. Epub 2008 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验