Suppr超能文献

基于智能数据分析的足球运动员下肢健康医疗管理方法。

An intelligent data analysis-based medical management method for lower limb health of football athletes.

机构信息

Department of Physical Education, Gansu University of Political Science and Law, Lanzhou 730030, China.

Volleyball Teaching and Research Department, Xi'an Physical Education University, Xi'an 710000, China.

出版信息

Math Biosci Eng. 2023 Jun 21;20(8):14005-14022. doi: 10.3934/mbe.2023624.

Abstract

With increasingly mature commercial operations, football has become the most popular sport in the world. As the main body of football, athletes are prone to injury due to an increasing degree of competition intensity. Their health determines the length of these athletes careers, especially regarding the lower limbs that are mainly used. Therefore, the smart visualization approaches that can realize such function are in urgent demand in the area of sports healthcare. Benefitted by the strong ability of perception and analysis, a convolutional neural network (CNN) is utilized to construct an intelligent data analysis-based medical management method for the lower limb health of football athletes. First, the CNN is formulated as the main backbone, and its parameters are optimized for multiple rounds during the training stage. Then, a statistical analysis software named SPSS is introduced to assess the effect mechanism of different postures on lower limbs. Some experiments are carried out on simulative data to evaluate the proposed method, and results show a good performance of the proposed method.

摘要

随着商业运营的日益成熟,足球已经成为世界上最受欢迎的运动。作为足球的主体,运动员由于比赛强度的不断增加,容易受伤。他们的健康决定了这些运动员职业生涯的长短,特别是在主要使用下肢的情况下。因此,体育保健领域急需能够实现这种功能的智能可视化方法。得益于强大的感知和分析能力,卷积神经网络(CNN)被用于构建一种基于智能数据分析的足球运动员下肢健康医疗管理方法。首先,将 CNN 作为主要骨干进行公式化,并在训练阶段进行多轮参数优化。然后,引入名为 SPSS 的统计分析软件来评估不同姿势对下肢的影响机制。在模拟数据上进行了一些实验来评估所提出的方法,结果表明该方法具有良好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验