Suppr超能文献

基于深度玻尔兹曼机和偏最小二乘法的中医剂量-效应关系分析。

Dose-effect relationship analysis of TCM based on deep Boltzmann machine and partial least squares.

机构信息

School of Computer, Jiangxi University of Chinese Medicine, Nanchang 330004, China.

Key Laboratory of Modern Preparations Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.

出版信息

Math Biosci Eng. 2023 Jun 30;20(8):14395-14413. doi: 10.3934/mbe.2023644.

Abstract

A dose-effect relationship analysis of traditional Chinese Medicine (TCM) is crucial to the modernization of TCM. However, due to the complex and nonlinear nature of TCM data, such as multicollinearity, it can be challenging to conduct a dose-effect relationship analysis. Partial least squares can be applied to multicollinearity data, but its internally extracted principal components cannot adequately express the nonlinear characteristics of TCM data. To address this issue, this paper proposes an analytical model based on a deep Boltzmann machine (DBM) and partial least squares. The model uses the DBM to extract nonlinear features from the feature space, replaces the components in partial least squares, and performs a multiple linear regression. Ultimately, this model is suitable for analyzing the dose-effect relationship of TCM. The model was evaluated using experimental data from Ma Xing Shi Gan Decoction and datasets from the UCI Machine Learning Repository. The experimental results demonstrate that the prediction accuracy of the model based on the DBM and partial least squares method is on average 10% higher than that of existing methods.

摘要

中药剂量-效应关系分析对于中药现代化至关重要。然而,由于中药数据的复杂性和非线性,如多重共线性,进行剂量-效应关系分析具有挑战性。偏最小二乘法可用于处理多重共线性数据,但它内部提取的主成分不能充分表达中药数据的非线性特征。针对这一问题,本文提出了一种基于深度玻尔兹曼机(DBM)和偏最小二乘法的分析模型。该模型使用 DBM 从特征空间中提取非线性特征,替换偏最小二乘中的成分,并进行多元线性回归。最终,该模型适用于分析中药的剂量-效应关系。该模型使用了麻杏石甘汤的实验数据和 UCI 机器学习知识库中的数据集进行了评估。实验结果表明,基于 DBM 和偏最小二乘法的模型的预测精度平均比现有方法提高了 10%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验