Zheng Xuepeng, Nie Bin, Du Jianqiang, Rao Yi, Li Huan, Chen Jiandong, Du Yuwen, Zhang Yuchao, Jin Haike
School of Computer, Jiangxi University of Chinese Medicine, Nanchang, China.
National Pharmaceutical Engineering Center for Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, China.
Front Physiol. 2024 May 1;15:1369165. doi: 10.3389/fphys.2024.1369165. eCollection 2024.
A novel regression model, monotonic inner relation-based non-linear partial least squares (MIR-PLS), is proposed to address complex issues like limited observations, multicollinearity, and nonlinearity in Chinese Medicine (CM) dose-effect relationship experimental data. MIR-PLS uses a piecewise mapping function based on monotonic cubic splines to model the non-linear inner relations between input and output score vectors. Additionally, a new weight updating strategy (WUS) is developed by leveraging the properties of monotonic functions. The proposed MIR-PLS method was compared with five well-known PLS variants: standard PLS, quadratic PLS (QPLS), error-based QPLS (EB-QPLS), neural network PLS (NNPLS), and spline PLS (SPL-PLS), using CM dose-effect relationship datasets and near-infrared (NIR) spectroscopy datasets. Experimental results demonstrate that MIR-PLS exhibits general applicability, achieving excellent predictive performances in the presence or absence of significant non-linear relationships. Furthermore, the model is not limited to CM dose-effect relationship research and can be applied to other regression tasks.
提出了一种新型回归模型——基于单调内部关系的非线性偏最小二乘法(MIR-PLS),以解决中医剂量效应关系实验数据中观测值有限、多重共线性和非线性等复杂问题。MIR-PLS使用基于单调三次样条的分段映射函数对输入和输出得分向量之间的非线性内部关系进行建模。此外,利用单调函数的性质开发了一种新的权重更新策略(WUS)。使用中医剂量效应关系数据集和近红外(NIR)光谱数据集,将所提出的MIR-PLS方法与五种著名的PLS变体进行了比较:标准PLS、二次PLS(QPLS)、基于误差的QPLS(EB-QPLS)、神经网络PLS(NNPLS)和样条PLS(SPL-PLS)。实验结果表明,MIR-PLS具有普遍适用性,在存在或不存在显著非线性关系的情况下均能实现优异的预测性能。此外,该模型不仅限于中医剂量效应关系研究,还可应用于其他回归任务。