Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
Clin Epigenetics. 2023 Sep 7;15(1):144. doi: 10.1186/s13148-023-01556-z.
First-degree relatives of type 2 diabetics (FDR) exhibit a high risk of developing type 2 diabetes (T2D) and feature subcutaneous adipocyte hypertrophy, independent of obesity. In FDR, adipose cell abnormalities contribute to early insulin-resistance and are determined by adipocyte precursor cells (APCs) early senescence and impaired recruitment into the adipogenic pathway. Epigenetic mechanisms signal adipocyte differentiation, leading us to hypothesize that abnormal epigenetic modifications cause adipocyte dysfunction and enhance T2D risk. To test this hypothesis, we examined the genome-wide histone profile in APCs from the subcutaneous adipose tissue of healthy FDR.
Sequencing-data analysis revealed 2644 regions differentially enriched in lysine 4 tri-methylated H3-histone (H3K4me3) in FDR compared to controls (CTRL) with significant enrichment in mitochondrial-related genes. These included TFAM, which regulates mitochondrial DNA (mtDNA) content and stability. In FDR APCs, a significant reduction in H3K4me3 abundance at the TFAM promoter was accompanied by a reduction in TFAM mRNA and protein levels. FDR APCs also exhibited reduced mtDNA content and mitochondrial-genome transcription. In parallel, FDR APCs exhibited impaired differentiation and TFAM induction during adipogenesis. In CTRL APCs, TFAM-siRNA reduced mtDNA content, mitochondrial transcription and adipocyte differentiation in parallel with upregulation of the CDKN1A and ZMAT3 senescence genes. Furthermore, TFAM-siRNA significantly expanded hydrogen peroxide (HO)-induced senescence, while HO did not affect TFAM expression.
Histone modifications regulate APCs ability to differentiate in mature cells, at least in part by modulating TFAM expression and affecting mitochondrial function. Reduced H3K4me3 enrichment at the TFAM promoter renders human APCs senescent and dysfunctional, increasing T2D risk.
2 型糖尿病患者的一级亲属(FDR)发生 2 型糖尿病(T2D)的风险较高,且存在皮下脂肪细胞肥大,这与肥胖无关。在 FDR 中,脂肪细胞异常导致早期胰岛素抵抗,并且由脂肪细胞前体细胞(APCs)的早期衰老和向脂肪生成途径募集受损决定。表观遗传机制信号传导脂肪细胞分化,这使我们假设异常的表观遗传修饰导致脂肪细胞功能障碍并增加 T2D 风险。为了验证这一假设,我们检查了来自健康 FDR 皮下脂肪组织的 APCs 的全基因组组蛋白图谱。
测序数据分析显示,与对照(CTRL)相比,FDR 中赖氨酸 4 三甲基化 H3-组蛋白(H3K4me3)的 2644 个区域差异丰富,线粒体相关基因显著富集。其中包括 TFAM,它调节线粒体 DNA(mtDNA)含量和稳定性。在 FDR APCs 中,TFAM 启动子处 H3K4me3 丰度显著降低,同时 TFAM mRNA 和蛋白水平降低。FDR APCs 还表现出 mtDNA 含量和线粒体基因组转录减少。同时,FDR APCs 在脂肪生成过程中表现出分化和 TFAM 诱导受损。在 CTRL APCs 中,TFAM-siRNA 降低 mtDNA 含量、线粒体转录和脂肪细胞分化,同时上调 CDKN1A 和 ZMAT3 衰老基因。此外,TFAM-siRNA 显著扩大了过氧化氢(HO)诱导的衰老,而 HO 不影响 TFAM 表达。
组蛋白修饰调节 APCs 在成熟细胞中分化的能力,至少部分通过调节 TFAM 表达和影响线粒体功能。TFAM 启动子处 H3K4me3 富集减少使人类 APCs 衰老和功能失调,增加 T2D 风险。