Department of Biomedical Sciences and Engineering, National Central University, Jhong-li, Taoyuan 32023, Taiwan.
Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan 32023, Taiwan.
Langmuir. 2023 Sep 19;39(37):13169-13177. doi: 10.1021/acs.langmuir.3c01585. Epub 2023 Sep 7.
Biofoulants can adhere to multiple surfaces, degrading the performance of medical devices and industrial facilities and/or causing nosocomial infection. The surface immobilization of zwitterionic materials can prevent the initial attachment of the foulants but lacks extensive implementation. Herein, we propose a facile, universal, two-step surface modification strategy to improve fouling resistance. In the first step, the substrates were immersed in a codeposition solution containing dopamine and branched polyethylenimine (PEI) to form a "primer" layer (PDA/PEI). In the second step, the primer layers were treated with 1,3-propane sultone to betainize primary/secondary/tertiary amine moieties of PEI, generating zwitterions on substrates. After betainization, PS-grafted PDA/PEI (PDA/PEI/S) via a ring-opening alkylation reaction manifested changes in wettability. X-ray photoelectron spectroscopy revealed the presence of zwitterionic moieties on the PDA/PEI/S surfaces. Further investigations using ellipsometry and atomic force microscopy were conducted to scrutinize the relation among the PEI content, film thickness, primer stability, and betainization. As a result, zwitterion-decorated substrates prepared under optimal conditions can exhibit high resistance against bacterial fouling, achieving a 98.5% reduction in bacterial attachment. In addition, the method shows a substrate-independent property, capable of successfully applying it on organic and inorganic substrates. Finally, the newly developed approach shows excellent biocompatibility, displaying no significant difference compared with blank control samples. Overall, we envision that the facile surface modification strategy can further promote the preparation of zwitterion-decorated materials in the future.
生物污垢可以附着在多种表面上,降低医疗器械和工业设施的性能,或者导致医院感染。两性离子材料的表面固定可以防止污垢的初始附着,但缺乏广泛的实施。在此,我们提出了一种简便、通用的两步表面改性策略来提高抗污染性。在第一步中,将基底浸入含有多巴胺和支化聚乙烯亚胺(PEI)的共沉积溶液中,形成“底漆”层(PDA/PEI)。在第二步中,用 1,3-丙烷砜处理底漆层,使 PEI 的伯/仲/叔胺部分发生甜菜碱化,在基底上生成两性离子。甜菜碱化后,通过开环烷基化反应接枝 PS 的 PDA/PEI(PDA/PEI/S)表现出润湿性的变化。X 射线光电子能谱显示 PDA/PEI/S 表面存在两性离子基团。进一步使用椭偏仪和原子力显微镜进行研究,以研究 PEI 含量、薄膜厚度、底漆稳定性和甜菜碱化之间的关系。结果表明,在最佳条件下制备的两性离子修饰基底对细菌污染具有高抵抗力,细菌附着减少了 98.5%。此外,该方法具有与基底无关的特性,能够成功应用于有机和无机基底。最后,新开发的方法表现出优异的生物相容性,与空白对照样品相比没有显著差异。总的来说,我们预计这种简便的表面改性策略将在未来进一步促进两性离子修饰材料的制备。