van Stokkum Ivo H M, Müller Marc G, Weißenborn Jörn, Weigand Sebastian, Snellenburg Joris J, Holzwarth Alfred R
Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, the Netherlands.
Max-Planck-Institut für chemische Energiekonversion, 45470 Mülheim a.d. Ruhr, Germany.
iScience. 2023 Aug 15;26(9):107650. doi: 10.1016/j.isci.2023.107650. eCollection 2023 Sep 15.
We establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl , two Red Chl , and a reaction center compartment (WL-RC). The FRL-PSI contains two additional Chl compartments. The lowest excited state of the FRL-RC is downshifted by ≈ 29 nm. The rate of charge separation drops from ≈900 ns in WL-RC to ≈300 ns in FRL-RC. The delayed trapping in the FRL-PSI (≈130 ps) is explained by uphill energy transfer from the Chl compartments with Gibbs free energies of ≈kT below that of the FRL-RC.
我们建立了一个通用的动力学方案,用于研究在白光(WL)或远红光(FRL)条件下生长的蓝藻光系统I(PSI)中的能量转移和捕获。借助对五个蓝藻菌株中测量的所有发射和瞬态吸收数据集进行同步目标分析,我们解析了PSI中不同物种的光谱和动力学特性。WL-PSI可由体叶绿素、两个红色叶绿素和一个反应中心隔室(WL-RC)来描述。FRL-PSI包含另外两个叶绿素隔室。FRL-RC的最低激发态下移了约29纳米。电荷分离速率从WL-RC中的约900纳秒降至FRL-RC中的约300纳秒。FRL-PSI中的延迟捕获(约130皮秒)可通过来自吉布斯自由能比FRL-RC低约kT的叶绿素隔室的上坡能量转移来解释。