Suppr超能文献

三聚体、单体和亚基缺失的集胞藻 6803 光合作用系统 I 的激发能转移动力学。

Excitation energy transfer kinetics of trimeric, monomeric and subunit-depleted Photosystem I from Synechocystis PCC 6803.

机构信息

Biological Research Centre, University of Szeged, Temesvári krt. 62, Szeged 6726, Hungary.

Doctoral School of Biology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.

出版信息

Biochem J. 2021 Apr 16;478(7):1333-1346. doi: 10.1042/BCJ20210021.

Abstract

Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing 'red' chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a 'minimal' monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5-2 red Chls emitting at 710-715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer-monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.

摘要

光系统 I 是最有效的光合作用酶,其结构和组成在所有需氧光合生物中高度保守。蓝细菌光系统 I 通常以三聚体的形式存在,其原因仍存在争议。几乎普遍认为,光系统 I 包含多个长波长吸收的“红色”叶绿素(Chl),这对激发能量转移和捕获有很大的影响。在这里,我们对来自集胞藻 PCC 6803 的三聚体光系统 I 与单体复合物ΔpsaL 突变体和“最小”单体复合物ΔFIJL 进行了光谱比较,后者仅包含亚基 A、B、C、D、E、K 和 M。在室温下光化学的量子产率在所有复合物中是相同的,证明了这个光系统的功能稳健性。单体复合物的远红光吸收和发射减少,相当于损失了 1.5-2 个在 710-715nm 处发射的红色 Chl,而最长波长的发射在 722nm 处不受影响。77K 时皮秒荧光动力学显示,所有复合物中都有光谱和动力学上不同的红色 Chl,并且平衡时间长达 50ps。我们发现,在 77K 时,红色 Chl 不是不可逆的陷阱,而是仍然可以将激发转移到反应中心,尤其是在三聚体复合物中。基于结构的Förster 能量转移计算支持将最低能量状态分配给 Chl 对 B37/B38,以及三聚体特异性的红色 Chl 发射到位于单体-单体界面的 Chls A32/B7。这些中间能量的红色 Chl 有助于将能量从最低能量状态迁移到反应中心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验