Biological Research Centre, University of Szeged, Temesvári krt. 62, Szeged 6726, Hungary.
Doctoral School of Biology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.
Biochem J. 2021 Apr 16;478(7):1333-1346. doi: 10.1042/BCJ20210021.
Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing 'red' chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a 'minimal' monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5-2 red Chls emitting at 710-715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer-monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.
光系统 I 是最有效的光合作用酶,其结构和组成在所有需氧光合生物中高度保守。蓝细菌光系统 I 通常以三聚体的形式存在,其原因仍存在争议。几乎普遍认为,光系统 I 包含多个长波长吸收的“红色”叶绿素(Chl),这对激发能量转移和捕获有很大的影响。在这里,我们对来自集胞藻 PCC 6803 的三聚体光系统 I 与单体复合物ΔpsaL 突变体和“最小”单体复合物ΔFIJL 进行了光谱比较,后者仅包含亚基 A、B、C、D、E、K 和 M。在室温下光化学的量子产率在所有复合物中是相同的,证明了这个光系统的功能稳健性。单体复合物的远红光吸收和发射减少,相当于损失了 1.5-2 个在 710-715nm 处发射的红色 Chl,而最长波长的发射在 722nm 处不受影响。77K 时皮秒荧光动力学显示,所有复合物中都有光谱和动力学上不同的红色 Chl,并且平衡时间长达 50ps。我们发现,在 77K 时,红色 Chl 不是不可逆的陷阱,而是仍然可以将激发转移到反应中心,尤其是在三聚体复合物中。基于结构的Förster 能量转移计算支持将最低能量状态分配给 Chl 对 B37/B38,以及三聚体特异性的红色 Chl 发射到位于单体-单体界面的 Chls A32/B7。这些中间能量的红色 Chl 有助于将能量从最低能量状态迁移到反应中心。