Suppr超能文献

叶绿素 f 向天然和工程化光系统 I 复合物捕光中心的能量转移。

Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes.

机构信息

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.

Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.

出版信息

Photosynth Res. 2019 Aug;141(2):151-163. doi: 10.1007/s11120-019-00616-x. Epub 2019 Feb 1.

Abstract

Certain cyanobacteria can thrive in environments enriched in far-red light (700-800 nm) due to an acclimation process known as far-red light photoacclimation (FaRLiP). During FaRLiP, about 8% of the Chl a molecules in the photosystems are replaced by Chl f and a very small amount of Chl d. We investigated the spectroscopic properties of Photosystem I (PSI) complexes isolated from wild-type (WT) Synechococcus sp. PCC 7335 and a chlF mutant strain (lacking Chl f synthase) grown in white and far-red light (WL-PSI and FRL-PSI, respectively). WT-FRL-PSI complexes contain Chl f and Chl a but not Chl d. The light-minus dark difference spectrum of the trapping center at high spectral resolution indicates that the special pair in WT-FRL-PSI consists of Chl a molecules with maximum bleaching at 703-704 nm. The action spectrum for photobleaching of the special pair showed that Chl f molecules absorbing at wavelengths up to 800 nm efficiently transfer energy to the trapping center in FRL-PSI complexes to produce a charge-separated state. This is ~ 50 nm further into the near IR than WL-PSI; Chl f has a quantum yield equivalent to that of Chl a in the antenna, i.e., ~ 1.0. PSI complexes from Synechococcus 7002 carrying 3.8 Chl f molecules could promote photobleaching of the special pair by energy transfer at wavelengths longer than WT PSI complexes. Results from these latter studies are directly relevant to the issue of whether introduction of Chl f synthase into plants could expand the wavelength range available for oxygenic photosynthesis in crop plants.

摘要

某些蓝藻可以在富含远红光(700-800nm)的环境中生长,这要归功于一种被称为远红光光适应(FaRLiP)的适应过程。在 FaRLiP 过程中,光合作用系统中约 8%的 Chl a 分子被 Chl f 和少量的 Chl d 取代。我们研究了从野生型(WT)Synechococcus sp. PCC 7335 和一个缺乏 Chl f 合酶的 chlF 突变株(缺乏 Chl f 合酶)在白光和远红光(WL-PSI 和 FRL-PSI)中生长时分离出的光系统 I(PSI)复合物的光谱特性。WT-FRL-PSI 复合物含有 Chl f 和 Chl a,但不含 Chl d。高光谱分辨率下捕获中心的光减暗差光谱表明,WT-FRL-PSI 中的特殊对由 Chl a 分子组成,其最大漂白波长在 703-704nm。特殊对光漂白的作用光谱表明,吸收波长可达 800nm 的 Chl f 分子有效地将能量转移到 FRL-PSI 复合物中的捕获中心,产生电荷分离态。这比 WL-PSI 进一步进入近红外区约 50nm;Chl f 在天线中的量子产率与 Chl a 相当,即约 1.0。携带 3.8 个 Chl f 分子的 Synechococcus 7002 的 PSI 复合物可以通过长于 WT PSI 复合物的波长的能量转移来促进特殊对的光漂白。这些后续研究的结果直接关系到是否可以将 Chl f 合酶引入植物,从而扩大作物植物中氧气光合作用的可用波长范围的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验