Seemann Klaus M, Kovács András, Schmid Thomas E, Ilicic Katarina, Multhoff Gabriele, Dunin-Borkowski Rafal E, Michelagnoli Caterina, Cieplicka-Oryńczak Natalia, Jana Soumen, Colombi Giacomo, Jentschel Michael, Schneider Claus M, Kuhn Bernd
Peter Grünberg Institute PGI-6, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
Université de Lorraine, CNRS, IJL, 54000 Nancy, France.
iScience. 2023 Aug 18;26(9):107683. doi: 10.1016/j.isci.2023.107683. eCollection 2023 Sep 15.
Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-YbO core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life β-radiation from Yb, Yb, and Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the β-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications.
磁性纳米颗粒可通过多种方式进行功能化,以用于生物医学应用。在此,我们在一种新型的Fe-Pt-YbO核壳纳米颗粒中结合了四个有利特性。(a) 纳米颗粒尺寸为10纳米,使其能够扩散穿过神经组织。(b) 颗粒在合成后为超顺磁性,退火后为铁磁性,能够通过磁场进行方向控制、增强核磁共振成像对比度以及进行热疗。(c) 壳层经中子活化后,它们携带来自镱、镱和镥的低能量、短半衰期β辐射。(d) 此外,颗粒可通过等离子体激发和发光进行光学可视化。为了证明这些颗粒在癌症治疗中的潜力,我们将培养的人胶质母细胞瘤细胞(LN-18)暴露于未活化和活化的颗粒中,以确认颗粒被内化,并且掺入纳米颗粒中子活化壳层中的放射性同位素的β辐射杀死了超过98%的LN-18癌细胞,这为未来的抗癌应用带来了希望。