Suppr超能文献

通过机器学习指导的组合启动子修饰来优化在环境和高温下的乙醇生产。

Optimizing Ethanol Production in at Ambient and Elevated Temperatures through Machine Learning-Guided Combinatorial Promoter Modifications.

机构信息

National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

出版信息

ACS Synth Biol. 2023 Oct 20;12(10):2897-2908. doi: 10.1021/acssynbio.3c00199. Epub 2023 Sep 8.

Abstract

Bioethanol has gained popularity in recent decades as an ecofriendly alternative to fossil fuels due to increasing concerns about global climate change. However, economically viable ethanol fermentation remains a challenge. High-temperature fermentation can reduce production costs, but yeast strains normally ferment poorly under high temperatures. In this study, we present a machine learning (ML) approach to optimize bioethanol production in by fine-tuning the promoter activities of three endogenous genes. We created 216 combinatorial strains of by replacing native promoters with five promoters of varying strengths to regulate ethanol production. Promoter replacement resulted in a 63% improvement in ethanol production at 30 °C. We created an ML-guided workflow by utilizing XGBoost to train high-performance models based on promoter strengths and cellular metabolite concentrations obtained from ethanol production of 216 combinatorial strains at 30 °C. This strategy was then applied to optimize ethanol production at 40 °C, where we selected 31 strains for experimental fermentation. This reduced experimental load led to a 7.4% increase in ethanol production in the second round of the ML-guided workflow. Our study offers a comprehensive library of promoter strength modifications for key ethanol production enzymes, showcasing how machine learning can guide yeast strain optimization and make bioethanol production more cost-effective and efficient. Furthermore, we demonstrate that metabolic engineering processes can be accelerated and optimized through this approach.

摘要

生物乙醇作为化石燃料的环保替代品,在近几十年变得越来越受欢迎,这主要是由于人们对全球气候变化的担忧日益增加。然而,经济可行的乙醇发酵仍然是一个挑战。高温发酵可以降低生产成本,但酵母菌株在高温下通常发酵效果不佳。在这项研究中,我们提出了一种机器学习 (ML) 方法,通过微调三个内源性基因的启动子活性来优化 的生物乙醇生产。我们通过用五种不同强度的启动子替换天然启动子,创造了 216 种 的组合菌株,以调节乙醇的生产。启动子替换使 30°C 下的乙醇产量提高了 63%。我们利用 XGBoost 创建了一个 ML 指导的工作流程,根据在 30°C 下通过 216 种组合菌株的乙醇生产获得的启动子强度和细胞代谢物浓度来训练高性能模型。然后,我们将该策略应用于 40°C 下的乙醇生产优化,从中选择了 31 株进行实验发酵。这种减少实验工作量的方法导致第二轮 ML 指导工作流程中的乙醇产量提高了 7.4%。我们的研究为关键乙醇生产酶的启动子强度修饰提供了全面的文库,展示了机器学习如何指导酵母菌株优化,使生物乙醇生产更具成本效益和效率。此外,我们证明通过这种方法可以加速和优化代谢工程过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6014/10594650/957fb9dfcbf5/sb3c00199_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验