Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark.
Joint BioEnergy Institute, Emeryville, CA, USA.
Nat Commun. 2020 Sep 25;11(1):4880. doi: 10.1038/s41467-020-17910-1.
Through advanced mechanistic modeling and the generation of large high-quality datasets, machine learning is becoming an integral part of understanding and engineering living systems. Here we show that mechanistic and machine learning models can be combined to enable accurate genotype-to-phenotype predictions. We use a genome-scale model to pinpoint engineering targets, efficient library construction of metabolic pathway designs, and high-throughput biosensor-enabled screening for training diverse machine learning algorithms. From a single data-generation cycle, this enables successful forward engineering of complex aromatic amino acid metabolism in yeast, with the best machine learning-guided design recommendations improving tryptophan titer and productivity by up to 74 and 43%, respectively, compared to the best designs used for algorithm training. Thus, this study highlights the power of combining mechanistic and machine learning models to effectively direct metabolic engineering efforts.
通过先进的机械建模和大规模高质量数据集的生成,机器学习正成为理解和工程化生命系统的一个组成部分。在这里,我们展示了机械模型和机器学习模型可以结合起来,实现精确的基因型-表型预测。我们使用基因组规模的模型来确定工程目标,高效构建代谢途径设计的文库,并进行高通量生物传感器筛选,以训练各种机器学习算法。通过单一的数据生成周期,这使得在酵母中成功进行复杂芳香族氨基酸代谢的正向工程成为可能,与用于算法训练的最佳设计相比,机器学习指导的最佳设计分别将色氨酸产量和生产力提高了 74%和 43%。因此,本研究强调了结合机械模型和机器学习模型的力量,有效地指导代谢工程的努力。