Yarbrough Josiah, Bent Stacey F
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Department of Energy Science and Engineering, Stanford University, Stanford, California 94305, United States.
J Phys Chem A. 2023 Sep 21;127(37):7858-7868. doi: 10.1021/acs.jpca.3c04339. Epub 2023 Sep 8.
The ever-greater complexity of modern electronic devices requires a larger chemical toolbox to support their fabrication. Here, we explore the use of 1-nitropropane as a small molecule inhibitor (SMI) for selective atomic layer deposition (ALD) on a combination of SiO, Cu, CuO, and Ru substrates. Results using water contact angle goniometry, Auger electron spectroscopy, and infrared spectroscopy show that 1-nitropropane selectively chemisorbs to form a high-quality inhibition layer on Cu and CuO at an optimized temperature of 100 °C, but not on SiO and Ru. When tested against AlO ALD, however, a single pulse of 1-nitropropane is insufficient to block deposition on the Cu surface. Thus, a new multistep process is developed for low-temperature AlO ALD that cycles through exposures of 1-nitropropane, an aluminum metalorganic precursor, and coreactants HO and O, allowing the SMI to be sequentially reapplied and etched. Four different Al ALD precursors were investigated: trimethylaluminum (TMA), triethylaluminum (TEA), tris(dimethylamido)aluminum (TDMAA), and dimethylaluminum isopropoxide (DMAI). The resulting area-selective ALD process enables up to 50 cycles of AlO ALD on Ru but not Cu, with 98.7% selectivity using TEA, and up to 70 cycles at 97.4% selectivity using DMAI. This work introduces a new class of SMI for selective ALD at lower temperatures, which could expand selective growth schemes to biological or organic substrates where temperature instability may be a concern.
现代电子设备日益复杂,需要更大的化学工具库来支持其制造。在此,我们探索将1-硝基丙烷用作小分子抑制剂(SMI),用于在SiO、Cu、CuO和Ru衬底组合上进行选择性原子层沉积(ALD)。使用水接触角测角法、俄歇电子能谱和红外光谱的结果表明,1-硝基丙烷在100°C的优化温度下选择性化学吸附,在Cu和CuO上形成高质量的抑制层,但在SiO和Ru上则不然。然而,在针对AlO ALD进行测试时,单脉冲的1-硝基丙烷不足以阻止在Cu表面的沉积。因此,开发了一种用于低温AlO ALD的新多步工艺,该工艺循环通过1-硝基丙烷、铝金属有机前驱体以及共反应物HO和O的暴露,使SMI能够依次重新应用和蚀刻。研究了四种不同的Al ALD前驱体:三甲基铝(TMA)、三乙基铝(TEA)、三(二甲基氨基)铝(TDMAA)和二甲基铝异丙醇盐(DMAI)。由此产生的区域选择性ALD工艺能够在Ru上实现多达50个循环的AlO ALD,但在Cu上不行,使用TEA时选择性高达98.7%,使用DMAI时在97.4%的选择性下可达70个循环。这项工作引入了一类用于较低温度下选择性ALD的新型SMI,这可能将选择性生长方案扩展到可能存在温度不稳定性问题的生物或有机衬底上。