Computing Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94760, USA.
Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94760, USA.
Sci Rep. 2024 Jun 5;14(1):12907. doi: 10.1038/s41598-024-63497-8.
Flatbed scanners are commonly used for root analysis, but typical manual segmentation methods are time-consuming and prone to errors, especially in large-scale, multi-plant studies. Furthermore, the complex nature of root structures combined with noisy backgrounds in images complicates automated analysis. Addressing these challenges, this article introduces RhizoNet, a deep learning-based workflow to semantically segment plant root scans. Utilizing a sophisticated Residual U-Net architecture, RhizoNet enhances prediction accuracy and employs a convex hull operation for delineation of the primary root component. Its main objective is to accurately segment root biomass and monitor its growth over time. RhizoNet processes color scans of plants grown in a hydroponic system known as EcoFAB, subjected to specific nutritional treatments. The root detection model using RhizoNet demonstrates strong generalization in the validation tests of all experiments despite variable treatments. The main contributions are the standardization of root segmentation and phenotyping, systematic and accelerated analysis of thousands of images, significantly aiding in the precise assessment of root growth dynamics under varying plant conditions, and offering a path toward self-driving labs.
平板扫描仪通常用于根分析,但典型的手动分割方法既耗时又容易出错,尤其是在大规模、多株的研究中。此外,根结构的复杂性以及图像中嘈杂的背景使得自动化分析变得复杂。针对这些挑战,本文引入了基于深度学习的 RhizoNet 工作流程,用于语义分割植物根扫描。利用复杂的残差 U-Net 架构,RhizoNet 提高了预测准确性,并采用凸包操作对主根成分进行描绘。其主要目标是准确分割根生物量并监测其随时间的生长情况。RhizoNet 处理在水培系统(称为 EcoFAB)中生长的植物的彩色扫描,这些植物受到特定的营养处理。尽管处理方式不同,但 RhizoNet 的根检测模型在所有实验的验证测试中都表现出了很强的泛化能力。主要贡献是根分割和表型标准化、数千张图像的系统和加速分析,这极大地有助于精确评估不同植物条件下的根生长动态,并为自动驾驶实验室提供了一条途径。