Suppr超能文献

基于超高效液相色谱/四极杆飞行时间质谱和解吸电喷雾电离质谱成像对大叶三七(珠子参)中人参皂苷的表征

Characterization of ginsenosides from Panax japonicus var. major (Zhu-Zi-Shen) based on ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry and desorption electrospray ionization-mass spectrometry imaging.

作者信息

Jiang Meiting, Li Xiaohang, Zhao Yuying, Zou Yadan, Bai Maoli, Yang Zhiming, Wang Wei, Xu Xiaoyan, Wang Hongda, Yang Wenzhi, Chen Qinhua, Guo Dean

机构信息

National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.

Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, China.

出版信息

Chin Med. 2023 Sep 8;18(1):115. doi: 10.1186/s13020-023-00830-9.

Abstract

BACKGROUND

Panax japonicus var. major (PJM) belongs to the well-known ginseng species used in west China for hundreds of years, which has the effects of lung tonifying and yin nourishing, and exerts the analgesic, antitussive, and hemostatic activities. Compared with the other Panax species, the chemical composition and the spatial tissue distribution of the bioactive ginsenosides in PJM have seldom been investigated.

METHODS

Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS) and desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) were integrated for the systematic characterization and spatial tissue distribution studies of ginsenosides in the rhizome of PJM. Considering the great difficulty in exposing the minor saponins, apart from the conventional Auto MS/MS (M1), two different precursor ions list-including data-dependent acquisition (PIL-DDA) approaches, involving the direct input of an in-house library containing 579 known ginsenosides (M2) and the inclusion of the target precursors screened from the MS data by mass defect filtering (M3), were developed. The in situ spatial distribution of various ginsenosides in PJM was profiled based on DESI-MSI with a mass range of m/z 100-1500 in the negative ion mode, with the imaging data processed by the High Definition Imaging (HDI) software.

RESULTS

Under the optimized condition, 272 ginsenosides were identified or tentatively characterized, and 138 thereof were possibly not ever reported from the Panax genus. They were composed by 75 oleanolic acid type, 22 protopanaxadiol type, 52 protopanaxatriol type, 16 octillol type, 19 malonylated, 35 C-17 side-chain varied, and 53 others. In addition, the DESI-MSI experiment unveiled the differentiated distribution of saponins, but the main location in the cork layer and phloem of the rhizome. The abundance of the oleanolic acid ginsenosides was high in the rhizome slice of PJM, which was consistent with the results obtained by UHPLC/QTOF-MS.

CONCLUSION

Comprehensive characterization of the ginsenosides in the rhizome of PJM was achieved, with a large amount of unknown structures unveiled primarily. We, for the first time, reported the spatial tissue distribution of different subtypes of ginsenosides in the rhizome slice of PJM. These results can benefit the quality control and further development of PJM and the other ginseng species.

摘要

背景

竹节参属于中国西部数百年来一直使用的著名人参种类,具有补肺养阴的功效,并具有镇痛、止咳和止血作用。与其他人参种类相比,竹节参中生物活性人参皂苷的化学成分和空间组织分布鲜有研究。

方法

采用超高效液相色谱/四极杆飞行时间质谱(UHPLC/QTOF-MS)和解吸电喷雾电离质谱成像(DESI-MSI)技术,对竹节参根茎中的人参皂苷进行系统表征和空间组织分布研究。考虑到暴露微量皂苷的难度较大,除了传统的自动串联质谱(M1)外,还开发了两种不同的前体离子列表——包括数据依赖采集(PIL-DDA)方法,即直接输入包含579种已知人参皂苷的内部数据库(M2),以及通过质量亏损过滤从质谱数据中筛选目标前体离子(M3)。基于DESI-MSI在负离子模式下对竹节参中各种人参皂苷的原位空间分布进行了分析,质量范围为m/z 100 - 1500,成像数据由高清成像(HDI)软件处理。

结果

在优化条件下,共鉴定或初步表征了272种人参皂苷,其中138种可能从未在人参属中报道过。它们由75种齐墩果酸型、22种原人参二醇型、52种原人参三醇型、16种奥克梯醇型、19种丙二酰化型、35种C-17侧链变异型和53种其他类型组成。此外,DESI-MSI实验揭示了皂苷的差异分布,主要位于根茎的木栓层和韧皮部。竹节参根茎切片中齐墩果酸型人参皂苷的丰度较高,这与UHPLC/QTOF-MS获得的结果一致。

结论

实现了对竹节参根茎中人参皂苷的全面表征,初步揭示了大量未知结构。首次报道了竹节参根茎切片中不同亚型人参皂苷的空间组织分布。这些结果有助于竹节参及其他人参种类的质量控制和进一步开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cff5/10486018/b0e5b168d4cc/13020_2023_830_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验