Suppr超能文献

用于预测肾移植后重症肺炎的机器学习模型:一项单中心回顾性研究

Machine Learning Models for Prediction of Severe Pneumonia after Kidney Transplantation: A Single-Center Retrospective Study.

作者信息

Liu Yiting, Qiu Tao, Hu Haochong, Kong Chenyang, Zhang Yalong, Wang Tianyu, Zhou Jiangqiao, Zou Jilin

机构信息

Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China.

Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.

出版信息

Diagnostics (Basel). 2023 Aug 23;13(17):2735. doi: 10.3390/diagnostics13172735.

Abstract

BACKGROUND

The objective of this study was to formulate and validate a prognostic model for postoperative severe pneumonia (SPCP) in kidney transplant recipients utilizing machine learning algorithms, and to compare the performance of various models.

METHODS

Clinical manifestations and laboratory test results upon admission were gathered as variables for 88 patients who experienced PCP following kidney transplantation. The most discriminative variables were identified, and subsequently, Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), K-Nearest Neighbor (KNN), Light Gradient Boosting Machine (LGBM), and eXtreme Gradient Boosting (XGB) models were constructed. Finally, the models' predictive capabilities were assessed through ROC curves, sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and F1-scores. The Shapley additive explanations (SHAP) algorithm was employed to elucidate the contributions of the most effective model's variables.

RESULTS

Through lasso regression, five features-hemoglobin (Hb), Procalcitonin (PCT), C-reactive protein (CRP), progressive dyspnea, and Albumin (ALB)-were identified, and six machine learning models were developed using these variables after evaluating their correlation and multicollinearity. In the validation cohort, the RF model demonstrated the highest AUC (0.920 (0.810-1.000), F1-Score (0.8), accuracy (0.885), sensitivity (0.818), PPV (0.667), and NPV (0.913) among the six models, while the XGB and KNN models exhibited the highest specificity (0.909) among the six models. Notably, CRP exerted a significant influence on the models, as revealed by SHAP and feature importance rankings.

CONCLUSIONS

Machine learning algorithms offer a viable approach for constructing prognostic models to predict the development of severe disease following PCP in kidney transplant recipients, with potential practical applications.

摘要

背景

本研究的目的是利用机器学习算法制定并验证肾移植受者术后严重肺炎(SPCP)的预后模型,并比较各种模型的性能。

方法

收集88例肾移植后发生PCP患者入院时的临床表现和实验室检查结果作为变量。确定最具鉴别力的变量,随后构建支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)、K近邻(KNN)、轻梯度提升机(LGBM)和极端梯度提升(XGB)模型。最后,通过ROC曲线、敏感性、特异性、准确性、阳性预测值(PPV)、阴性预测值(NPV)和F1分数评估模型的预测能力。采用Shapley加法解释(SHAP)算法阐明最有效模型变量的贡献。

结果

通过套索回归,确定了五个特征——血红蛋白(Hb)、降钙素原(PCT)、C反应蛋白(CRP)、进行性呼吸困难和白蛋白(ALB),在评估这些变量的相关性和多重共线性后,使用这些变量开发了六个机器学习模型。在验证队列中,RF模型在六个模型中表现出最高的AUC(0.920(0.810 - 1.000))、F1分数(0.8)、准确性(0.885)、敏感性(0.818)、PPV(0.667)和NPV(0.913),而XGB和KNN模型在六个模型中表现出最高的特异性(0.909)。值得注意的是,SHAP和特征重要性排名显示CRP对模型有显著影响。

结论

机器学习算法为构建预后模型以预测肾移植受者PCP后严重疾病的发展提供了一种可行的方法,具有潜在的实际应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2f2/10486565/b6794bec8160/diagnostics-13-02735-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验