Suppr超能文献

基于机器学习的重症肺炎预测模型的开发与验证:一项多中心队列研究。

Development and validation of machine learning-based prediction model for severe pneumonia: A multicenter cohort study.

作者信息

Yang Zailin, Chen Shuang, Tang Xinyi, Wang Jiao, Liu Ling, Hu Weibo, Huang Yulin, Hu Jian'e, Xing Xiangju, Zhang Yakun, Li Jun, Lei Haike, Liu Yao

机构信息

Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.

School of Medicine Chongqing University, Chongqing, 400044, China.

出版信息

Heliyon. 2024 Sep 3;10(17):e37367. doi: 10.1016/j.heliyon.2024.e37367. eCollection 2024 Sep 15.

Abstract

Severe pneumonia (SP) is a prevalent respiratory ailment characterized by high mortality and poor prognosis. Current scoring systems for pneumonia are not only time-consuming but also exhibit limitations in early SP prediction. To address this gap, this study aimed to develop a machine-learning model using inflammatory markers from peripheral blood for early prediction of SP. A total of 204 pneumonia patients from seven medical centers were studied, with 143 (68 SP cases) in the training cohort and 61 (32 SP cases) in the test cohort. Clinical characteristics and laboratory test results were collected at diagnosis. Various models including Logistic Regression, Random Forest, Naïve Bayes, XGBoost, Support Vector Machine, and Decision Tree were built and evaluated. Seven predictors-age, sex, WBC count, T-lymphocyte count, NLR, CRP, TNF-α, IL-4/IFN-γ ratio, IL-6/IL-10 ratio-were selected through LASSO regression and clinical insight. The XGBoost model, exhibiting best performance, achieved an AUC of 0.901 (95 % : 0.827 to 0.985) in the test cohort, with an accuracy of 0.803, sensitivity of 0.844, specificity of 0.759, and F1_score of 0.818. Indeed, SHAP analysis emphasized the significance of elevated WBC counts, older age, and elevated CRP as the top predictors. The use of inflammatory biomarkers in this concise predictive model shows significant potential for the rapid assessment of SP risk, thereby facilitating timely preventive interventions.

摘要

重症肺炎(SP)是一种常见的呼吸系统疾病,具有高死亡率和不良预后的特点。当前的肺炎评分系统不仅耗时,而且在早期SP预测方面存在局限性。为了填补这一空白,本研究旨在开发一种使用外周血炎症标志物的机器学习模型,用于早期预测SP。共研究了来自七个医疗中心的204例肺炎患者,其中143例(68例SP病例)在训练队列中,61例(32例SP病例)在测试队列中。在诊断时收集临床特征和实验室检查结果。构建并评估了包括逻辑回归、随机森林、朴素贝叶斯、XGBoost、支持向量机和决策树在内的各种模型。通过LASSO回归和临床洞察选择了七个预测因子——年龄、性别、白细胞计数、T淋巴细胞计数、中性粒细胞与淋巴细胞比值(NLR)、C反应蛋白(CRP)、肿瘤坏死因子-α(TNF-α)、白细胞介素-4/干扰素-γ比值、白细胞介素-6/白细胞介素-10比值。表现最佳的XGBoost模型在测试队列中的曲线下面积(AUC)为0.901(95%:0.827至0.985),准确率为�0.803,灵敏度为0.844,特异性为0.759,F1分数为0.818。事实上,SHAP分析强调白细胞计数升高、年龄较大和CRP升高作为主要预测因子的重要性。在这个简洁的预测模型中使用炎症生物标志物显示出快速评估SP风险的巨大潜力,从而有助于及时进行预防性干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/137b/11408761/e046ee391d8b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验