Suppr超能文献

银纳米颗粒与牛血清白蛋白之间的形态依赖性相互作用。

The Morphology Dependent Interaction between Silver Nanoparticles and Bovine Serum Albumin.

作者信息

Zhang Jingyi, Fu Xianjun, Yan Changling, Wang Gongke

机构信息

Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.

Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.

出版信息

Materials (Basel). 2023 Aug 25;16(17):5821. doi: 10.3390/ma16175821.

Abstract

Biological applications of silver nanoparticles (AgNPs) depend on the covalently attached or adsorbed proteins. A series of biological effects of AgNPs within cells are determined by the size, shape, aspect ratio, surface charge, and modifiers. Herein, the morphology dependent interaction between AgNPs and protein was investigated. AgNPs with three different morphologies, such as silver nanospheres, silver nanorods, and silver nanotriangles, were employed to investigate the morphological effect on the interaction with a model protein: bovine serum albumin (BSA). The adsorptive interactions between BSA and the AgNPs were probed by UV-Vis spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), and circular dichroism (CD) techniques. The results revealed that the particle size, shape, and dispersion of the three types of AgNPs markedly influence the interaction with BSA. Silver nanospheres and nanorods were capsulated by protein coronas, which led to slightly enlarged outer size. The silver nanotriangles evolved gradually into nanodisks in the presence of BSA. Fluorescence spectroscopy confirmed the static quenching the fluorescence emission of BSA by the three AgNPs. The FTIR and CD results suggested that the AgNPs with different morphologies had different effects on the secondary structure of BSA. The silver nanospheres and silver nanorods induced more pronounced structural changes than silver nanotriangles. These results suggest that the formation of a protein corona and the aggregation behaviors of AgNPs are markedly determined by their inherent morphologies.

摘要

银纳米颗粒(AgNPs)的生物学应用取决于共价连接或吸附的蛋白质。AgNPs在细胞内的一系列生物学效应由其尺寸、形状、纵横比、表面电荷和修饰剂决定。在此,研究了AgNPs与蛋白质之间的形态依赖性相互作用。使用三种不同形态的AgNPs,如银纳米球、银纳米棒和银纳米三角形,来研究其形态对与模型蛋白质牛血清白蛋白(BSA)相互作用的影响。通过紫外-可见光谱、荧光光谱、动态光散射(DLS)、傅里叶变换红外光谱(FTIR)、透射电子显微镜(TEM)和圆二色性(CD)技术探测了BSA与AgNPs之间的吸附相互作用。结果表明,这三种类型的AgNPs的粒径、形状和分散性显著影响与BSA的相互作用。银纳米球和纳米棒被蛋白质冠层包裹,导致外部尺寸略有增大。在BSA存在的情况下,银纳米三角形逐渐演变成纳米盘。荧光光谱证实了三种AgNPs对BSA荧光发射的静态猝灭。FTIR和CD结果表明,不同形态的AgNPs对BSA的二级结构有不同的影响。银纳米球和银纳米棒比银纳米三角形引起更明显的结构变化。这些结果表明,蛋白质冠层的形成和AgNPs的聚集行为明显由其固有形态决定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed64/10488934/07aea574bc0c/materials-16-05821-g001.jpg

相似文献

1
The Morphology Dependent Interaction between Silver Nanoparticles and Bovine Serum Albumin.
Materials (Basel). 2023 Aug 25;16(17):5821. doi: 10.3390/ma16175821.
4
Bovine serum albumin interacts with silver nanoparticles with a "side-on" or "end on" conformation.
Chem Biol Interact. 2016 Jun 25;253:100-11. doi: 10.1016/j.cbi.2016.05.018. Epub 2016 May 11.
5
Protein interactions with silver nanoparticles: Green synthesis, and biophysical approach.
Int J Biol Macromol. 2017 Feb;95:421-428. doi: 10.1016/j.ijbiomac.2016.11.046. Epub 2016 Nov 22.
6
Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin.
Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109856. doi: 10.1016/j.msec.2019.109856. Epub 2019 Jun 3.
7
Bovine Serum Albumin Enhances Silver Nanoparticle Dissolution Kinetics in a Size- and Concentration-Dependent Manner.
Langmuir. 2020 Feb 4;36(4):1053-1061. doi: 10.1021/acs.langmuir.9b03251. Epub 2020 Jan 21.
8
Influence of pH on interaction of silver nanoparticles - protein: Analyses by spectroscopic and thermodynamic ideology.
Colloids Surf B Biointerfaces. 2019 Dec 1;184:110524. doi: 10.1016/j.colsurfb.2019.110524. Epub 2019 Sep 25.
9
Effects of gold nanoparticle morphologies on interactions with proteins.
Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110830. doi: 10.1016/j.msec.2020.110830. Epub 2020 Mar 10.

引用本文的文献

1
Interaction between pristine nC and bovine serum albumin by fluorimetry: assessment of inner filter effect corrections.
Front Bioeng Biotechnol. 2025 Feb 20;13:1518698. doi: 10.3389/fbioe.2025.1518698. eCollection 2025.
2
Apoptosis and cell cycle arrest of bone marrow cells by green-synthesized silver but not albumin nanoparticles.
Toxicol Rep. 2025 Feb 13;14:101960. doi: 10.1016/j.toxrep.2025.101960. eCollection 2025 Jun.
3
Interactions between gold nanoparticles with different morphologies and human serum albumin.
Front Chem. 2023 Oct 19;11:1273388. doi: 10.3389/fchem.2023.1273388. eCollection 2023.

本文引用的文献

1
Gold and silver nanoparticle interactions with human proteins: impact and implications in biocorona formation.
J Mater Chem B. 2015 Mar 14;3(10):2075-2082. doi: 10.1039/c4tb01926a. Epub 2015 Feb 2.
2
A Decade of the Protein Corona.
ACS Nano. 2017 Dec 26;11(12):11773-11776. doi: 10.1021/acsnano.7b08008. Epub 2017 Dec 5.
3
Protein bio-corona: critical issue in immune nanotoxicology.
Arch Toxicol. 2017 Mar;91(3):1031-1048. doi: 10.1007/s00204-016-1797-5. Epub 2016 Jul 20.
4
Bovine serum albumin interacts with silver nanoparticles with a "side-on" or "end on" conformation.
Chem Biol Interact. 2016 Jun 25;253:100-11. doi: 10.1016/j.cbi.2016.05.018. Epub 2016 May 11.
6
Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues.
Crit Rev Food Sci Nutr. 2018 Jan 22;58(2):297-317. doi: 10.1080/10408398.2016.1160363. Epub 2017 Jul 11.
7
Influence of Solution Chemistry and Soft Protein Coronas on the Interactions of Silver Nanoparticles with Model Biological Membranes.
Environ Sci Technol. 2016 Mar 1;50(5):2301-9. doi: 10.1021/acs.est.5b04694. Epub 2016 Feb 17.
8
Silver nanoparticle protein corona and toxicity: a mini-review.
J Nanobiotechnology. 2015 Sep 4;13:55. doi: 10.1186/s12951-015-0114-4.
9
Silver nanoparticles: synthesis, properties, and therapeutic applications.
Drug Discov Today. 2015 May;20(5):595-601. doi: 10.1016/j.drudis.2014.11.014. Epub 2014 Dec 24.
10
Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA).
J Photochem Photobiol B. 2015 Jan;142:103-9. doi: 10.1016/j.jphotobiol.2014.10.013. Epub 2014 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验