Xia Rong, Li Yang, You Song, Lu Chunhua, Xu Wenbin, Ni Yaru
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China.
Materials (Basel). 2023 Aug 31;16(17):5988. doi: 10.3390/ma16175988.
Plasmonic absorbers with broadband angle-insensitive antireflection have attracted intense interests because of its wide applications in optical devices. Hybrid surfaces with multiple different sub-wavelength array units can provide broadened antireflection, while many of these antireflective surfaces only work for specific angles and require high complexity of nanofabrication. Here, a plasmonic asymmetric nanostructure composed of the moth-eye dielectric nanoarray partially modified with the top Ag nanoshell providing a side opening for broadband incident-angle-insensitive antireflection and absorption, is rationally designed by nanoimprinting lithography and oblique angle deposition. This study illustrates that the plasmonic asymmetric nanostructure not only excites strong plasmonic resonance, but also induces more light entry into the dielectric nanocavity and then enhances the internal scattering, leading to optimized light localization. Hence, the asymmetric nanostructure can effectively enhance light confinement at different incident angles and exhibit better antireflection and the corresponding absorption performance than that of symmetric nanostructure over the visible wavelengths, especially suppressing at least 16.4% lower reflectance in the range of 645-800 nm at normal incidence.Moreover, the reflectance variance of asymmetric nanostructure with the incident angle changing from 5° to 60° is much smaller than that of symmetric nanostructure, making our approach relevant for various applications in photocatalysis, photothermal conversion, and so on.
具有宽带角度不敏感抗反射特性的等离子体吸收器因其在光学器件中的广泛应用而备受关注。具有多个不同亚波长阵列单元的混合表面可以提供更宽的抗反射特性,然而这些抗反射表面中的许多仅在特定角度下起作用,并且需要高度复杂的纳米制造工艺。在此,通过纳米压印光刻和倾斜角沉积合理设计了一种等离子体不对称纳米结构,该结构由蛾眼介电纳米阵列组成,其顶部用银纳米壳部分修饰,为宽带入射角不敏感抗反射和吸收提供了一个侧面开口。本研究表明,等离子体不对称纳米结构不仅能激发强烈的等离子体共振,还能诱导更多光进入介电纳米腔,进而增强内部散射,导致光局域化得到优化。因此,不对称纳米结构可以在不同入射角下有效地增强光限制,并且在可见光波长范围内比对称纳米结构表现出更好的抗反射和相应的吸收性能,特别是在正入射时,在645 - 800 nm范围内反射率至少降低16.4%。此外,不对称纳米结构的反射率随入射角从5°变化到60°的变化比对称纳米结构小得多,这使得我们的方法适用于光催化、光热转换等各种应用。