Suppr超能文献

利用高光谱成像技术快速无损估算柠条锦鸡儿颗粒饲料的水分含量。

Rapid and Non-Destructive Estimation of Moisture Content in Caragana Korshinskii Pellet Feed Using Hyperspectral Imaging.

机构信息

College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.

出版信息

Sensors (Basel). 2023 Sep 1;23(17):7592. doi: 10.3390/s23177592.

Abstract

Moisture content is an important parameter for estimating the quality of pellet feed, which is vital in nutrition, storage, and taste. The ranges of moisture content serve as an index for factors such as safe storage and nutrition stability. A rapid and non-destructive model for the measurement of moisture content in pellet feed was developed. To achieve this, 144 samples of Caragana korshinskii pellet feed from various regions in Inner Mongolia Autonomous Region underwent separate moisture content control, measurement using standard methods, and captured their images using a hyperspectral imaging (HSI) system in the spectral range of 935.5-2539 nm. The Monte Carlo cross validation (MCCV) was used to eliminate abnormal sample data from the spectral data for better model accuracy, and a global model of moisture content was built by using partial least squares regression (PLSR) with seven preprocessing techniques and two spectral feature extraction techniques. The results showed that the regression model developed by PLSR based on second derivative (SD) and competitive adaptive reweighted sampling (CARS) resulted in better performance for moisture content. The model showed predictive abilities for moisture content with a coefficient of determination of 0.9075 and a root mean square error (RMSE) of 0.4828 for the training set; and a coefficient of determination of 0.907 and a root mean square error (RMSE) of 0.5267 for the test set; and a relative prediction error of 3.3 and the standard error of 0.307.

摘要

水分含量是衡量颗粒饲料质量的一个重要参数,它在营养、储存和口感方面都起着至关重要的作用。水分含量范围可作为安全储存和营养稳定性等因素的指标。本研究旨在建立一种快速、无损的颗粒饲料水分含量测量模型。为此,对来自内蒙古自治区不同地区的 144 个柠条颗粒饲料样本进行了单独的水分含量控制、标准方法测量,并使用光谱范围为 935.5-2539nm 的高光谱成像(HSI)系统对其图像进行了采集。采用蒙特卡罗交叉验证(MCCV)剔除光谱数据中的异常样本数据,以提高模型精度,使用偏最小二乘回归(PLSR)结合七种预处理技术和两种光谱特征提取技术建立了全局水分含量模型。结果表明,基于二阶导数(SD)和竞争自适应重加权采样(CARS)的 PLSR 回归方法建立的模型在预测颗粒饲料水分含量方面表现出更好的性能。该模型对训练集和测试集的水分含量具有良好的预测能力,其决定系数分别为 0.9075 和 0.907,均方根误差(RMSE)分别为 0.4828 和 0.5267,相对预测误差为 3.3,标准误差为 0.307。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baf4/10490800/1f40df33cbca/sensors-23-07592-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验