Suppr超能文献

机器学习为高熵化合物探索铺平道路:挑战、进展与展望。

Machine Learning Paves the Way for High Entropy Compounds Exploration: Challenges, Progress, and Outlook.

作者信息

Wan Xuhao, Li Zeyuan, Yu Wei, Wang Anyang, Ke Xue, Guo Hailing, Su Jinhao, Li Li, Gui Qingzhong, Zhao Songpeng, Robertson John, Zhang Zhaofu, Guo Yuzheng

机构信息

School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China.

School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China.

出版信息

Adv Mater. 2023 Sep 9:e2305192. doi: 10.1002/adma.202305192.

Abstract

Machine learning (ML) has emerged as a powerful tool in the research field of high entropy compounds (HECs), which have gained worldwide attention due to their vast compositional space and abundant regulatability. However, the complex structure space of HEC poses challenges to traditional experimental and computational approaches, necessitating the adoption of machine learning. Microscopically, machine learning can model the Hamiltonian of the HEC system, enabling atomic-level property investigations, while macroscopically, it can analyze macroscopic material characteristics such as hardness, melting point, and ductility. Various machine learning algorithms, both traditional methods and deep neural networks, can be employed in HEC research. Comprehensive and accurate data collection, feature engineering, and model training and selection through cross-validation are crucial for establishing excellent ML models. ML also holds promise in analyzing phase structures and stability, constructing potentials in simulations, and facilitating the design of functional materials. Although some domains, such as magnetic and device materials, still require further exploration, machine learning's potential in HEC research is substantial. Consequently, machine learning has become an indispensable tool in understanding and exploiting the capabilities of HEC, serving as the foundation for the new paradigm of Artificial-intelligence-assisted material exploration.

摘要

机器学习(ML)已成为高熵化合物(HEC)研究领域的强大工具,高熵化合物因其广阔的成分空间和丰富的可调控性而受到全球关注。然而,高熵化合物复杂的结构空间给传统实验和计算方法带来了挑战,因此有必要采用机器学习。微观上,机器学习可以对高熵化合物系统的哈密顿量进行建模,从而能够在原子层面研究其性质,而宏观上,它可以分析硬度、熔点和延展性等宏观材料特性。各种机器学习算法,包括传统方法和深度神经网络,都可用于高熵化合物研究。通过交叉验证进行全面准确的数据收集、特征工程以及模型训练和选择,对于建立优秀的机器学习模型至关重要。机器学习在分析相结构和稳定性、构建模拟中的势以及促进功能材料设计方面也具有潜力。尽管在某些领域,如磁性和器件材料,仍需要进一步探索,但机器学习在高熵化合物研究中的潜力巨大。因此,机器学习已成为理解和开发高熵化合物能力不可或缺的工具,是人工智能辅助材料探索新范式的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验