Malashin Ivan, Daibagya Daniil, Tynchenko Vadim, Nelyub Vladimir, Borodulin Aleksei, Gantimurov Andrei, Selyukov Alexandr, Ambrozevich Sergey, Smirnov Mikhail, Ovchinnikov Oleg
Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia.
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
Materials (Basel). 2024 Oct 16;17(20):5056. doi: 10.3390/ma17205056.
This study addresses the challenge of modeling temperature-dependent photoluminescence (PL) in CdS colloidal quantum dots (QD), where PL properties fluctuate with temperature, complicating traditional modeling approaches. The objective is to develop a predictive model capable of accurately capturing these variations using Long Short-Term Memory (LSTM) networks, which are well suited for managing temporal dependencies in time-series data. The methodology involved training the LSTM model on experimental time-series data of PL intensity and temperature. Through numerical simulation, the model's performance was assessed. Results demonstrated that the LSTM-based model effectively predicted PL trends under different temperature conditions. This approach could be applied in optoelectronics and quantum dot-based sensors for enhanced forecasting capabilities.
本研究应对了对硫化镉胶体量子点(QD)中温度依赖型光致发光(PL)进行建模的挑战,其中PL特性随温度波动,使传统建模方法变得复杂。目标是开发一种预测模型,该模型能够使用长短期记忆(LSTM)网络准确捕捉这些变化,LSTM网络非常适合处理时间序列数据中的时间依赖性。该方法包括在PL强度和温度的实验时间序列数据上训练LSTM模型。通过数值模拟,评估了该模型的性能。结果表明,基于LSTM的模型有效地预测了不同温度条件下的PL趋势。这种方法可应用于光电子学和基于量子点的传感器,以增强预测能力。