Suppr超能文献

一种用于模拟小分子在反相液相色谱中保留时间的多目标定量结构保留关系方法。

A multi-target QSRR approach to model retention times of small molecules in RPLC.

作者信息

Kumari Priyanka, Van Laethem Thomas, Duroux Diane, Fillet Marianne, Hubert Phillipe, Sacré Pierre-Yves, Hubert Cédric

机构信息

Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, University of Liège (ULiege), CIRM, Quartier Hopital (B36 Tower 4), Avenue Hippocrate, 4000 Liège, Belgium; Laboratory for the Analysis of Medicines, University of Liège (ULiege), CIRM, Quartier Hopital (B36 Tower 4), Avenue Hippocrate, 4000 Liège, Belgium.

Department of Pharmacy, Laboratory of Pharmaceutical Analytical Chemistry, University of Liège (ULiege), CIRM, Quartier Hopital (B36 Tower 4), Avenue Hippocrate, 4000 Liège, Belgium; Laboratory for the Analysis of Medicines, University of Liège (ULiege), CIRM, Quartier Hopital (B36 Tower 4), Avenue Hippocrate, 4000 Liège, Belgium.

出版信息

J Pharm Biomed Anal. 2023 Nov 30;236:115690. doi: 10.1016/j.jpba.2023.115690. Epub 2023 Sep 4.

Abstract

Quantitative structure-retention relationship models (QSRR) have been utilized as an alternative to costly and time-consuming separation analyses and associated experiments for predicting retention time. However, achieving 100 % accuracy in retention prediction is unrealistic despite the existence of various tools and approaches. The limitations of vast data availability and time complexity hinder the use of most algorithms for retention prediction. Therefore, in this study, we examined and compared two approaches for modelling retention time using a dataset of small molecules with retention times obtained at multiple conditions, referred to as multi-targets (five pH levels: 2.7, 3.5, 5, 6.5, and 8 at gradient times of 20 min of mobile phase). The first approach involved developing separate models for predicting retention time at each condition (single-target approach), while the second approach aimed to learn a single model for predicting retention across all conditions simultaneously (multi-target approach). Our findings highlight the advantages of the multi-target approach over the single-target modelling approach. The multi-target models are more efficient in terms of size and learning speed compared to the single-target models. These retention prediction models offer two-fold benefits. Firstly, they enhance knowledge and understanding of retention times, identifying molecular descriptors that contribute to changes in retention behaviour under different pH conditions. Secondly, these approaches can be extended to address other multi-target property prediction problems, such as multi-quantitative structure Property(X) relationship studies (mt-QS(X)R).

摘要

定量结构保留关系模型(QSRR)已被用作预测保留时间的一种替代方法,以取代成本高昂且耗时的分离分析及相关实验。然而,尽管存在各种工具和方法,但要在保留时间预测上达到100%的准确率是不现实的。大量数据可用性和时间复杂性的限制阻碍了大多数算法用于保留时间预测。因此,在本研究中,我们使用一个小分子数据集对两种保留时间建模方法进行了检验和比较,该数据集包含在多种条件下获得的保留时间,即多目标(五个pH水平:2.7、3.5、5、6.5和8,流动相梯度时间为20分钟)。第一种方法是针对每种条件开发单独的预测保留时间的模型(单目标方法),而第二种方法旨在学习一个同时预测所有条件下保留情况的单一模型(多目标方法)。我们的研究结果突出了多目标方法相对于单目标建模方法的优势。与单目标模型相比,多目标模型在规模和学习速度方面更高效。这些保留时间预测模型有两方面的益处。首先,它们增强了对保留时间的认识和理解,识别出在不同pH条件下有助于保留行为变化的分子描述符。其次,这些方法可以扩展到解决其他多目标性质预测问题,如多定量结构性质(X)关系研究(mt-QS(X)R)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验