Suppr超能文献

牺牲型BiOBr模板辅助合成具有氧空位的α-BiO/BiOBr异质结用于增强光催化固氮

Self-sacrificed BiOBr template-assisted synthesis of α-BiO/BiOBr heterojunctions with oxygen vacancies for enhanced photocatalytic nitrogen fixation.

作者信息

Chen Bowen, Hou Yuanwen, Li Hanke, Gao Hejun, Fu Hongquan, Liao Fang, Zhang Juan, Liao Yunwen

机构信息

College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China.

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong 510641, China.

出版信息

J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1857-1866. doi: 10.1016/j.jcis.2023.08.200. Epub 2023 Sep 3.

Abstract

The catalytic conversion of nitrogen to ammonia is one of the most significant processes in nature and the chemical industry. However, the traditional Haber-Bosch process of ammonia synthesis consumes substantial energy and emits a large amount of carbon dioxide. The efficiency of photocatalytic N activation is severely limited by the lack of N adsorption sites and poor carrier utilization. Herein, an efficient α-BiO/BiOBr heterojunction is proposed with a photocatalytic nitrogen fixation activity of 238.67 μmol·g·h. Compared with the BiOBr precursor, α-BiO and BiOBr, the α-BiO/BiOBr heterojunction with oxygen vacancies can improve the adsorption and activation capacity of N and promote the separation efficiency of charge carrier pairs by accommodating photogenerated electrons under visible light through the mechanism of N-type semiconductors. Therefore, oxygen vacancies and heterojunction engineering of semiconductive nanomaterials provide a promising method for the rational design of photocatalysts to enhance the rate of ammonia synthesis under mild conditions.

摘要

氮催化转化为氨是自然界和化学工业中最重要的过程之一。然而,传统的哈伯-博施法合成氨消耗大量能源并排放大量二氧化碳。光催化氮活化的效率受到氮吸附位点缺乏和载流子利用率低的严重限制。在此,提出了一种高效的α-BiO/BiOBr异质结,其光催化固氮活性为238.67 μmol·g·h。与BiOBr前驱体、α-BiO和BiOBr相比,具有氧空位的α-BiO/BiOBr异质结可以提高氮的吸附和活化能力,并通过N型半导体机制在可见光下容纳光生电子,从而提高电荷载流子对的分离效率。因此,半导体纳米材料的氧空位和异质结工程为合理设计光催化剂以提高温和条件下氨合成速率提供了一种有前景的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验