Suppr超能文献

具有高效载流子分离的独特管状 BiOBr/g-C<sub>3</sub>N<sub>4</sub>异质结用于光催化固氮。

Unique Tubular BiOBr/g-C N Heterojunction with Efficient Separation of Charge Carriers for Photocatalytic Nitrogen Fixation.

机构信息

Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei, Anhui, 23060, China.

School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230601, China.

出版信息

Chemistry. 2023 Jun 22;29(35):e202300616. doi: 10.1002/chem.202300616. Epub 2023 May 5.

Abstract

The industrial ammonia synthesis process consumes a lot of energy and causes serious environmental pollution. As a sustainable approach for ammonia synthesis, photocatalytic nitrogen reduction employing water as the reducing agent has a lot of potential. A simple surfactant-assisted solvothermal method is used to synthesize g-C N nanotubes with flower-like spherical BiOBr grown inside and outside (BiOBr/g-C N , BC). The hollow tubular structure realizes the full use of visible light by the multi-scattering effect of light. Large surface areas and more active sites for N adsorption and activation are present in the distinctive spatially dispersed hierarchical structures. Particularly, the quick separation and transfer of electrons and holes are facilitated by the sandwich tubular heterojunctions and tight contact interface of BiOBr and g-C N . The maximal NH generation rate of the BiOBr/g-C N composite catalysts can reach 255.04 μmol⋅ g ⋅ h , and it is 13.9 and 5.8 times that of pure BiOBr and g-C N . This work provides a novel method for designing and constructing unique heterojunctions for efficient photocatalytic nitrogen fixation.

摘要

工业氨合成过程消耗大量能源,并造成严重的环境污染。作为氨合成的一种可持续方法,利用水作为还原剂的光催化氮气还原具有很大的潜力。采用简单的表面活性剂辅助溶剂热法合成了具有内外生长花状球形 BiOBr 的 g-C N 纳米管(BiOBr/g-C N ,BC)。中空管状结构通过光的多次散射效应实现了可见光的充分利用。独特的空间分散分层结构具有较大的比表面积和更多的 N 吸附和活化活性位点。特别地,三明治管状异质结和 BiOBr 与 g-C N 的紧密接触界面促进了电子和空穴的快速分离和转移。BiOBr/g-C N 复合催化剂的最大 NH 生成速率可达 255.04 μmol⋅g ⋅h ,分别是纯 BiOBr 和 g-C N 的 13.9 和 5.8 倍。这项工作为设计和构建高效光催化固氮的独特异质结提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验