Suppr超能文献

估算加泰罗尼亚的每日空气温度和污染:多暴露因素的综合时空建模。

Estimating daily air temperature and pollution in Catalonia: A comprehensive spatiotemporal modelling of multiple exposures.

机构信息

ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.

ISGlobal, Barcelona, Spain.

出版信息

Environ Pollut. 2023 Nov 15;337:122501. doi: 10.1016/j.envpol.2023.122501. Epub 2023 Sep 8.

Abstract

Environmental epidemiology studies require models of multiple exposures to adjust for co-exposure and explore interactions. We estimated spatiotemporal exposure to surface air temperature and pollution (PM, PM, NO, O) at high spatiotemporal resolution (daily, 250 m) for 2018-2020 in Catalonia. Innovations include the use of TROPOMI products, a data split for remote sensing gap-filling evaluation, estimation of prediction uncertainty, and use of explainable machine learning. We compiled meteorological and air quality station measurements, climate and atmospheric composition reanalyses, remote sensing products, and other spatiotemporal data. We performed gap-filling of remotely-sensed products using Random Forest (RF) models and validated them using Out-Of-Bag (OOB) samples and a structured data split. The exposure modelling workflow consisted of: 1) PM station imputation with PM data; 2) quantile RF (QRF) model fitting; and 3) geostatistical residual spatial interpolation. Prediction uncertainty was estimated using QRF. SHAP values were used to examine variable importance and the fitted relationships. Model performance was assessed via nested CV at the station level. Evaluation of the gap-filling models using the structured split showed error underestimation when using OOB. Temperature models had the best performance (R =0.98) followed by the gaseous air pollutants (R =0.81 for NO and 0.86 for O), while the performance of the PM and PM models was lower (R =0.57 and 0.63 respectively). Predicted exposure patterns captured urban heat island effects, dust advection events, and NO hotspots. SHAP values estimated a high importance of TROPOMI tropospheric NO columns in PM and NO models, and confirmed that the fitted associations conformed to prior knowledge. Our work highlights the importance of correctly validating gap-filling models and the potential of TROPOMI measurements. Moderate performance in PM models can be partly explained by the poor station coverage. Our exposure estimates can be used in epidemiological studies potentially accounting for exposure uncertainty.

摘要

环境流行病学研究需要对多种暴露因素进行建模,以调整共同暴露因素并探索相互作用。我们在 2018-2020 年期间,以高时空分辨率(每日,250 米)对加泰罗尼亚地区的地表气温和污染(PM2.5、PM10、NO、O3)进行了时空暴露评估。创新之处包括使用 TROPOMI 产品、用于遥感数据填补评估的数据集划分、预测不确定性的估计以及可解释机器学习的应用。我们综合了气象和空气质量站测量数据、气候和大气成分再分析数据、遥感产品以及其他时空数据。我们使用随机森林(RF)模型对遥感产品进行了填补数据的处理,并使用袋外(OOB)样本和结构化数据集划分进行了验证。暴露建模工作流程包括:1)使用 PM 数据对 PM 站数据进行插补;2)进行分位数随机森林(QRF)模型拟合;3)进行地统计学残差空间插值。使用 QRF 估计预测不确定性。SHAP 值用于检查变量重要性和拟合关系。通过在站级别的嵌套交叉验证评估模型性能。使用结构化数据集划分评估填补模型时,OOB 会低估误差。温度模型的性能最佳(R=0.98),其次是气态空气污染物(NO 的 R=0.81,O3 的 R=0.86),而 PM 和 PM10 模型的性能较低(R=0.57 和 0.63)。预测的暴露模式捕捉到了城市热岛效应、扬尘输送事件和 NO 热点。SHAP 值估计了 TROPOMI 对流层 NO 柱在 PM 和 NO 模型中的高度重要性,并证实拟合的关联符合先验知识。我们的工作强调了正确验证填补模型的重要性以及 TROPOMI 测量的潜力。PM 模型的中等性能部分可以解释为站点覆盖范围较差。我们的暴露估计可以用于流行病学研究,潜在地考虑暴露不确定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验