MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India.
Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, MH, India.
Int J Biol Macromol. 2023 Dec 31;253(Pt 3):126787. doi: 10.1016/j.ijbiomac.2023.126787. Epub 2023 Sep 9.
Biotemplates provide a facile, rapid, and environmentally benign route for synthesizing various nanostructured materials. Herein, Locust Bean Gum (LBG), a galactomannan polysaccharide, has been used as a biotemplate for synthesizing ZnO nanoparticles (NPs) for the first time. The composition, structure, morphology, and bandgap of ZnO were investigated by Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Photoelectron Spectroscopy (XPS), X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV-vis spectroscopy. XRD data showed single-phase crystalline hexagonal NPs. FTIR spectra confirmed the presence of M-O bonding in the sample. At a concentration of 0.5 mg/mL the NPs can degrade Rhodamine B under sunlight, displaying excellent photocatalytic activity. These NPs exhibited antimicrobial activity in both Staphylococcus aureus and Bacillus subtilis. Significant cell death was observed at 500 μg/mL, 250 μg/mL, 125 μg/mL and 62.5 μg/mL of NP in breast cancer, ovarian cancer and lung cancer cell lines. Wound healing assay showed that the NPs significantly blocked the cell migration at a concentration as low as 62.5 μg/mL in all three cell lines. Further optimization of the nanostructure properties will make it a promising candidate in the field of nano-biotechnology and bioengineering owing to its wide range of potential applications.
生物模板为合成各种纳米结构材料提供了一种简便、快速和环境友好的途径。本文首次以豆胶(LBG),一种半乳甘露聚糖多糖,作为合成 ZnO 纳米粒子(NPs)的生物模板。通过能谱(EDX)、X 射线光电子能谱(XPS)、X 射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外可见光谱(UV-vis)研究了 ZnO 的组成、结构、形貌和带隙。XRD 数据显示单相结晶六方 NPs。FTIR 谱证实了样品中存在 M-O 键合。在浓度为 0.5mg/mL 时, NPs 可以在阳光下降解罗丹明 B,表现出优异的光催化活性。这些 NPs 在金黄色葡萄球菌和枯草芽孢杆菌中均表现出抗菌活性。在乳腺癌、卵巢癌和肺癌细胞系中,浓度为 500μg/mL、250μg/mL、125μg/mL 和 62.5μg/mL 的 NPs 观察到明显的细胞死亡。伤口愈合试验表明,在所有三种细胞系中,浓度低至 62.5μg/mL 的 NPs 即可显著阻断细胞迁移。由于其广泛的潜在应用,进一步优化纳米结构特性将使其成为纳米生物技术和生物工程领域的有前途的候选者。