Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA.
Advanced Medical Center, Shonan Kamakura General Hospital, Kamakura, Japan.
Brachytherapy. 2023 Nov-Dec;22(6):697-708. doi: 10.1016/j.brachy.2023.06.228. Epub 2023 Sep 9.
α-particle targeted radionuclide therapy has shown promise for optimal cancer management, an exciting new era for brachytherapy. Alpha-emitting nuclides can have significant advantages over gamma- and beta-emitters due to their high linear energy transfer (LET). While their limited path length results in more specific tumor 0kill with less damage to surrounding normal tissues, their high LET can produce substantially more lethal double strand DNA breaks per radiation track than beta particles. Over the last decade, the physical and chemical attributes of Actinium-225 (Ac) including its half-life, decay schemes, path length, and straightforward chelation ability has peaked interest for brachytherapy agent development. However, this has been met with challenges including source availability, accurate modeling for standardized dosimetry for brachytherapy treatment planning, and laboratory space allocation in the hospital setting for on-demand radiopharmaceuticals production. Current evidence suggests that a simple empirical approach based on Ac administered radioactivity may lead to inconsistent outcomes and toxicity. In this review article, we highlight the recent advances in Ac source production, dosimetry modeling, and current clinical studies.
α-粒子靶向放射性核素治疗在癌症治疗方面显示出巨大的潜力,为近距离放射治疗带来了令人振奋的新时代。与γ和β发射体相比,α发射核素具有显著的优势,因为它们具有较高的线性能量转移(LET)。虽然它们的有限射程导致更特异性的肿瘤杀伤,对周围正常组织的损伤较小,但它们的高 LET 可以在每条放射轨迹上产生比 β 粒子更多的致命双链 DNA 断裂。在过去的十年中,锕-225(Ac)的物理和化学特性,包括半衰期、衰变模式、射程和简单的螯合能力,都引起了人们对近距离放射治疗剂开发的极大兴趣。然而,这也带来了一些挑战,包括源的可用性、用于近距离放射治疗计划标准化剂量学的准确建模,以及医院环境中按需放射性药物生产的实验室空间分配。目前的证据表明,基于 Ac 给予的放射性的简单经验方法可能导致不一致的结果和毒性。在这篇综述文章中,我们强调了 Ac 源生产、剂量学建模和当前临床研究的最新进展。