Suppr超能文献

化学线粒体毒性结构特征的建模与见解

Modeling and Insights into the Structural Characteristics of Chemical Mitochondrial Toxicity.

作者信息

Zhang Ruiqiu, Chen Zhaoyang, Wang Baobao, Li Yan, Mu Yan, Li Xiao

机构信息

Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China.

Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.

出版信息

ACS Omega. 2023 Aug 23;8(35):31675-31682. doi: 10.1021/acsomega.3c01725. eCollection 2023 Sep 5.

Abstract

Mitochondria are the energy metabolism center of cells and are involved in a number of other processes, such as cell differentiation and apoptosis, signal transduction, and regulation of cell cycle and cell proliferation. It is of great significance to evaluate the mitochondrial toxicity of drugs and other chemicals. In the present study, we aimed to propose easily available artificial intelligence (AI) models for the prediction of chemical mitochondrial toxicity and investigate the structural characteristics with the analysis of molecular properties and structural alerts. The consensus model achieved good predictive results with high total accuracy at 87.21% for validation sets. The models can be accessed freely via https://ochem.eu/article/158582. Besides, several commonly used chemical properties were significantly different between chemicals with and without mitochondrial toxicity. We also detected the structural alerts (SAs) responsible for mitochondrial toxicity and integrated them into the web-server SApredictor (www.sapredictor.cn). The study may provide useful tools for in silico estimation of mitochondrial toxicity and be helpful to understand the mechanisms of mitochondrial toxicity.

摘要

线粒体是细胞的能量代谢中心,参与许多其他过程,如细胞分化和凋亡、信号转导以及细胞周期和细胞增殖的调控。评估药物和其他化学物质的线粒体毒性具有重要意义。在本研究中,我们旨在提出易于获得的人工智能(AI)模型来预测化学物质的线粒体毒性,并通过分子性质分析和结构警示来研究其结构特征。共识模型在验证集上取得了良好的预测结果,总准确率高达87.21%。这些模型可通过https://ochem.eu/article/158582免费访问。此外,具有和不具有线粒体毒性的化学物质之间,几种常用的化学性质存在显著差异。我们还检测到了导致线粒体毒性的结构警示(SAs),并将其整合到网络服务器SApredictor(www.sapredictor.cn)中。该研究可能为线粒体毒性的计算机模拟评估提供有用工具,并有助于理解线粒体毒性的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1641/10483523/73aad49bd05a/ao3c01725_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验