Perera Duwage C, Rasaiah Jayendran C
Department of Chemistry, University of Maine, Orono, Maine 04469, United States.
ACS Omega. 2023 Aug 21;8(35):32185-32203. doi: 10.1021/acsomega.3c04882. eCollection 2023 Sep 5.
Graphene and graphene oxide (GO)-based metal oxides could play an important role in using metal oxide like zinc oxide (ZnO) as photocatalysts to split water. The π conjugation structure of GO shows greater electron mobility and could enhance the photocatalytic performance of the bare ZnO catalyst by increasing the electron-hole separation. In this work, we use density functional theory (DFT) with the B3LYP exchange functional and DGDZVP2 basis set to study the impact of adsorbing (ZnO) nanoparticles on graphene and four different GO models (GO1, GO2, GO4, and GO5) on the hydration and hydrolysis of water that precedes water splitting to produce H and O atoms in the gas phase and compare them with our previous studies on the bare catalyst in the absence of the substrate. The potential energy curves and activation energies are similar, but the triplet states are lower in energy than the singlet states in contrast to the bare (ZnO) catalyst. We extend our calculations to water splitting from the hydrolyzed (ZnO) on GO1 (GO1-(ZnO)). The triplet state energy remains lower than the singlet state energy, and hydrogen production precedes the formation of oxygen, but there is no energy inter-crossing during the formation of O that occurs in the absence of a GO1 substrate. Although the hydrolysis reaction pathway follows similar steps in both the bare and GO1-(ZnO), water splitting with (ZnO) absorbed on the GO1 substrate skips two steps as it proceeds toward the production of the second H. The production of two hydrogen molecules precedes oxygen formation during water splitting, and the first Zn-H bond formation step is the rate-determining step. The ZnO trimer deposited on GO systems could be potentially attractive nanocatalysts for water splitting.
基于石墨烯和氧化石墨烯(GO)的金属氧化物在将氧化锌(ZnO)等金属氧化物用作光催化剂分解水方面可能发挥重要作用。GO的π共轭结构显示出更高的电子迁移率,并且可以通过增加电子-空穴分离来提高裸ZnO催化剂的光催化性能。在这项工作中,我们使用密度泛函理论(DFT),采用B3LYP交换泛函和DGDZVP2基组,研究吸附的(ZnO)纳米颗粒在石墨烯和四种不同的GO模型(GO1、GO2、GO4和GO5)上对水的水合和水解的影响,水合和水解是水分解产生气相中的H和O原子之前的过程,并将其与我们之前对无底物时裸催化剂的研究进行比较。势能曲线和活化能相似,但与裸(ZnO)催化剂相比,三重态的能量低于单重态。我们将计算扩展到从GO1上水解的(ZnO)(GO1-(ZnO))进行水分解。三重态能量仍然低于单重态能量,并且氢气生成先于氧气形成,但在没有GO1底物时O形成过程中没有能量交叉。尽管裸催化剂和GO1-(ZnO)中的水解反应途径遵循相似的步骤,但在GO1底物上吸附(ZnO)时水分解在生成第二个H的过程中跳过了两个步骤。在水分解过程中,两个氢分子的生成先于氧气形成,并且第一个Zn-H键形成步骤是速率决定步骤。沉积在GO体系上的ZnO三聚体可能是用于水分解的潜在有吸引力的纳米催化剂。