Quaranta Vanessa, Hellström Matti, Behler Jörg
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum , D-44780 Bochum, Germany.
J Phys Chem Lett. 2017 Apr 6;8(7):1476-1483. doi: 10.1021/acs.jpclett.7b00358. Epub 2017 Mar 20.
The dissociation of water is an important step in many chemical processes at solid surfaces. In particular, water often spontaneously dissociates near metal oxide surfaces, resulting in a mixture of HO, H, and OH at the interface. Ubiquitous proton-transfer (PT) reactions cause these species to dynamically interconvert, but the underlying mechanisms are poorly understood. Here, we develop and use a reactive high-dimensional neural-network potential based on density functional theory data to elucidate the structural and dynamical properties of the interfacial species at the liquid-water-metal-oxide interface, using the nonpolar ZnO(101̅0) surface as a prototypical case. Molecular dynamics simulations reveal that water dissociation and recombination proceed via two types of PT reactions: (i) to and from surface oxide and hydroxide anions ("surface-PT") and (ii) to and from neighboring adsorbed hydroxide ions and water molecules ("adlayer-PT"). We find that the adlayer-PT rate is significantly higher than the surface-PT rate. Water dissociation is, for both types of PT, governed by a predominant presolvation mechanism, i.e., thermal fluctuations that cause the adsorbed water molecules to occasionally accept a hydrogen bond, resulting in a decreased PT barrier and an increased dissociation rate as compared to when no hydrogen bond is present. Consequently, we are able to show that hydrogen bond fluctuations govern PT events at the water-metal-oxide interface in a way similar to that in acidic and basic aqueous bulk solutions.
水的解离是许多固体表面化学过程中的重要一步。特别是,水在金属氧化物表面附近常常会自发解离,导致界面处存在HO、H和OH的混合物。普遍存在的质子转移(PT)反应使这些物种动态相互转化,但其潜在机制却知之甚少。在此,我们基于密度泛函理论数据开发并使用了一种反应性高维神经网络势,以阐明液态水-金属氧化物界面处界面物种的结构和动力学性质,以非极性的ZnO(101̅0)表面作为典型例子。分子动力学模拟表明,水的解离和重组通过两种类型的PT反应进行:(i)与表面氧化物和氢氧根阴离子之间的转移(“表面PT”)以及(ii)与相邻吸附的氢氧根离子和水分子之间的转移(“吸附层PT”)。我们发现吸附层PT速率明显高于表面PT速率。对于这两种类型的PT,水的解离都由一种主要的预溶剂化机制控制,即热涨落导致吸附的水分子偶尔接受一个氢键,与不存在氢键时相比,这会导致PT势垒降低和解离速率增加。因此,我们能够证明氢键涨落在水-金属氧化物界面处控制PT事件的方式与在酸性和碱性本体水溶液中类似。