Suppr超能文献

使用正交氧化还原辅因子按需转移氧化还原反应平衡。

Shifting Redox Reaction Equilibria on Demand Using an Orthogonal Redox Cofactor.

作者信息

Aspacio Derek, Zhang Yulai, Cui Youtian, King Edward, Black William B, Perea Sean, Luu Emma, Siegel Justin B, Li Han

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States.

Genome Center, University of California, Davis, Davis, California 95616, United States.

出版信息

bioRxiv. 2023 Aug 30:2023.08.29.555398. doi: 10.1101/2023.08.29.555398.

Abstract

Natural metabolism relies on chemical compartmentalization of two redox cofactors, NAD and NADP, to orchestrate life-essential redox reaction directions. However, in whole cells the reliance on these canonical cofactors limits flexible control of redox reaction direction as these reactions are permanently tied to catabolism or anabolism. In cell-free systems, NADP is too expensive in large scale. We have previously reported the use of nicotinamide mononucleotide, (NMN) as a low-cost, noncanonical redox cofactor capable of specific electron delivery to diverse chemistries. Here, we present Nox Ortho, an NMNH-specific water-forming oxidase, that completes the toolkit to modulate NMNH/NMN ratio. This work uncovers an enzyme design principle that succeeds in parallel engineering of six butanediol dehydrogenases as NMN(H)-orthogonal biocatalysts consistently with a 10 - 10 -fold cofactor specificity switch from NAD(P) to NMN. We combine these to produce chiral-pure 2,3-butanediol (Bdo) isomers without interference from NAD(H) or NADP(H) in vitro and in cells. We establish that NMN(H) can be held at a distinct redox ratio on demand, decoupled from both NAD(H) and NADP(H) redox ratios in vitro and in vivo.

摘要

自然新陈代谢依赖于两种氧化还原辅因子NAD和NADP的化学区室化,以协调生命必需的氧化还原反应方向。然而,在整个细胞中,对这些经典辅因子的依赖限制了氧化还原反应方向的灵活控制,因为这些反应与分解代谢或合成代谢永久相关。在无细胞系统中,NADP大规模使用成本过高。我们之前报道过使用烟酰胺单核苷酸(NMN)作为一种低成本的非经典氧化还原辅因子,它能够将特定电子传递到多种化学反应中。在此,我们展示了Nox Ortho,一种特异性作用于NMNH的产水氧化酶,它完善了调节NMNH/NMN比例的工具包。这项工作揭示了一种酶设计原则,该原则成功地对六种丁二醇脱氢酶进行了平行工程改造,使其成为NMN(H)正交生物催化剂,同时实现了从NAD(P)到NMN的10⁻¹⁰倍辅因子特异性转换。我们将这些酶结合起来,在体外和细胞内生产手性纯的2,3 - 丁二醇(Bdo)异构体,且不受NAD(H)或NADP(H)的干扰。我们证实,NMN(H)可以根据需要保持在一个独特的氧化还原比例,在体外和体内均与NAD(H)和NADP(H)的氧化还原比例解耦。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b00e/10491207/1472be02062d/nihpp-2023.08.29.555398v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验