Suppr超能文献

大肠杆菌的代谢工程优化合成烟酰胺单核苷酸,一种非经典氧化还原辅因子。

Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor.

机构信息

Departments of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States.

Molecular Biology and Biochemistry, University of California, Irvine, CA, United States.

出版信息

Microb Cell Fact. 2020 Jul 27;19(1):150. doi: 10.1186/s12934-020-01415-z.

Abstract

BACKGROUND

Noncanonical redox cofactors are emerging as important tools in cell-free biosynthesis to increase the economic viability, to enable exquisite control, and to expand the range of chemistries accessible. However, these noncanonical redox cofactors need to be biologically synthesized to achieve full integration with renewable biomanufacturing processes.

RESULTS

In this work, we engineered Escherichia coli cells to biosynthesize the noncanonical cofactor nicotinamide mononucleotide (NMN), which has been efficiently used in cell-free biosynthesis. First, we developed a growth-based screening platform to identify effective NMN biosynthetic pathways in E. coli. Second, we explored various pathway combinations and host gene disruption to achieve an intracellular level of ~ 1.5 mM NMN, a 130-fold increase over the cell's basal level, in the best strain, which features a previously uncharacterized nicotinamide phosphoribosyltransferase (NadV) from Ralstonia solanacearum. Last, we revealed mechanisms through which NMN accumulation impacts E. coli cell fitness, which sheds light on future work aiming to improve the production of this noncanonical redox cofactor.

CONCLUSION

These results further the understanding of effective production and integration of NMN into E. coli. This may enable the implementation of NMN-directed biocatalysis without the need for exogenous cofactor supply.

摘要

背景

非规范氧化还原辅因子作为细胞无细胞生物合成中的重要工具不断涌现,以提高经济可行性、实现精密控制并扩大可应用的化学范围。然而,这些非规范氧化还原辅因子需要进行生物合成,才能与可再生生物制造工艺完全整合。

结果

在这项工作中,我们对大肠杆菌细胞进行了工程改造,以生物合成非规范辅因子烟酰胺单核苷酸(NMN),该辅因子已在细胞无细胞生物合成中得到有效应用。首先,我们开发了一个基于生长的筛选平台,以鉴定大肠杆菌中有效的 NMN 生物合成途径。其次,我们探索了各种途径组合和宿主基因敲除,以在最佳菌株中实现~1.5 mM 的细胞内 NMN 水平,比细胞的基础水平提高了 130 倍,该菌株具有来自茄科雷尔氏菌的先前未表征的烟酰胺磷酸核糖基转移酶(NadV)。最后,我们揭示了 NMN 积累如何影响大肠杆菌细胞适应性的机制,这为未来旨在提高这种非规范氧化还原辅因子生产的工作提供了思路。

结论

这些结果进一步加深了对有效生产和将 NMN 整合到大肠杆菌中的理解。这可能使 NMN 指导的生物催化无需外源辅因子供应成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff85/7384224/5ab4b157f47e/12934_2020_1415_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验