Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
Department of Chemistry, University of California, Davis, Davis, CA, USA.
Nat Chem Biol. 2020 Jan;16(1):87-94. doi: 10.1038/s41589-019-0402-7. Epub 2019 Nov 25.
Biological production of chemicals often requires the use of cellular cofactors, such as nicotinamide adenine dinucleotide phosphate (NADP). These cofactors are expensive to use in vitro and difficult to control in vivo. We demonstrate the development of a noncanonical redox cofactor system based on nicotinamide mononucleotide (NMN). The key enzyme in the system is a computationally designed glucose dehydrogenase with a 10-fold cofactor specificity switch toward NMN over NADP based on apparent enzymatic activity. We demonstrate that this system can be used to support diverse redox chemistries in vitro with high total turnover number (~39,000), to channel reducing power in Escherichia coli whole cells specifically from glucose to a pharmaceutical intermediate, levodione, and to sustain the high metabolic flux required for the central carbon metabolism to support growth. Overall, this work demonstrates efficient use of a noncanonical cofactor in biocatalysis and metabolic pathway design.
生物化学物质的生产通常需要使用细胞辅助因子,如烟酰胺腺嘌呤二核苷酸磷酸(NADP)。这些辅助因子在体外使用昂贵,在体内难以控制。我们展示了一种基于烟酰胺单核苷酸(NMN)的非典型氧化还原辅助因子系统的开发。该系统中的关键酶是一种经过计算设计的葡萄糖脱氢酶,其对 NMN 的辅因子特异性切换是 NADP 的 10 倍,这是基于表观酶活性。我们证明,该系统可用于体外支持多种氧化还原化学,总周转率高(约 39000),可将来自葡萄糖的还原力专门输送到大肠杆菌全细胞中的一种药物中间体左旋二酮,并维持支持生长所需的中央碳代谢的高代谢通量。总的来说,这项工作证明了在生物催化和代谢途径设计中有效利用非典型辅助因子。