Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA.
Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA.
Nat Commun. 2022 Aug 26;13(1):5021. doi: 10.1038/s41467-022-32727-w.
Noncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN). We achieve this by engineering the life-essential glutathione reductase in Escherichia coli to exclusively rely on the reduced NMN (NMNH). Using this system, we develop a phosphite dehydrogenase (PTDH) to cycle NMN with ~147-fold improved catalytic efficiency, which translates to an industrially viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations. Moreover, the PTDH variants also exhibit improved activity with another structurally deviant noncanonical cofactor, 1-benzylnicotinamide (BNA), showcasing their broad applications. Structural modeling prediction reveals a general design principle where the mutations and the smaller, noncanonical cofactors together mimic the steric interactions of the larger, natural cofactors NAD(P).
非经典氧化还原辅因子是替代烟酰胺腺嘌呤二核苷酸(磷酸)(NAD(P))的有吸引力的低成本替代品,可用于生物转化。然而,工程酶来利用它们具有挑战性。在这里,我们提出了一种高通量的定向进化平台,该平台将细胞生长与非经典辅因子烟酰胺单核苷酸(NMN)的体内循环偶联。我们通过工程改造大肠杆菌中的必需生命酶谷胱甘肽还原酶,使其专门依赖于还原型 NMN(NMNH)来实现这一点。使用该系统,我们开发了一种亚磷酸盐脱氢酶(PTDH),可使 NMN 循环,催化效率提高约 147 倍,这相当于在无高辅因子浓度的情况下,在无细胞生物转化中具有约 45,000 的工业可行总周转率。此外,PTDH 变体与另一种结构不同的非经典辅因子 1-苄基烟酰胺(BNA)也表现出更好的活性,展示了它们的广泛应用。结构建模预测揭示了一个通用的设计原则,其中突变和较小的非经典辅因子共同模拟较大的天然辅因子 NAD(P)的空间相互作用。