Suppr超能文献

用于抗生素发现的全球微生物组的计算探索。

Computational exploration of the global microbiome for antibiotic discovery.

作者信息

Santos-Júnior Célio Dias, Der Torossian Torres Marcelo, Duan Yiqian, Del Río Álvaro Rodríguez, Schmidt Thomas S B, Chong Hui, Fullam Anthony, Kuhn Michael, Zhu Chengkai, Houseman Amy, Somborski Jelena, Vines Anna, Zhao Xing-Ming, Bork Peer, Huerta-Cepas Jaime, de la Fuente-Nunez Cesar, Coelho Luis Pedro

机构信息

Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China.

Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, United States of America.

出版信息

bioRxiv. 2023 Sep 11:2023.08.31.555663. doi: 10.1101/2023.08.31.555663.

Abstract

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.

摘要

对抗抗生素耐药性危机迫切需要新型抗生素。我们提出了一种基于机器学习的方法,通过利用包含63410个宏基因组和87920个微生物基因组的庞大数据集来预测原核生物抗菌肽(AMPs)。这导致创建了AMPSphere,这是一个包含863498个非冗余肽的综合目录,其中大多数以前是未知的。我们观察到,AMPs的产生因栖息地而异,与其他栖息地相比,与动物相关的样本中AMPs的比例最高。此外,在不同的人类相关微生物群中,菌株水平的差异很明显。为了验证我们的预测,我们合成并实验测试了50种AMPs,证明了它们在体外和体内对临床相关耐药病原体的有效性。这些AMPs通过靶向细菌膜表现出抗菌活性。此外,AMPSphere为肽的进化起源提供了有价值的见解。总之,我们的方法在原核生物微生物群中鉴定出了AMPs序列,为发现抗生素开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca43/10498730/208c527fb557/nihpp-2023.08.31.555663v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验