文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习从人类肠道微生物组中识别抗菌肽。

Identification of antimicrobial peptides from the human gut microbiome using deep learning.

机构信息

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Biotechnol. 2022 Jun;40(6):921-931. doi: 10.1038/s41587-022-01226-0. Epub 2022 Mar 3.


DOI:10.1038/s41587-022-01226-0
PMID:35241840
Abstract

The human gut microbiome encodes a large variety of antimicrobial peptides (AMPs), but the short lengths of AMPs pose a challenge for computational prediction. Here we combined multiple natural language processing neural network models, including LSTM, Attention and BERT, to form a unified pipeline for candidate AMP identification from human gut microbiome data. Of 2,349 sequences identified as candidate AMPs, 216 were chemically synthesized, with 181 showing antimicrobial activity (a positive rate of >83%). Most of these peptides have less than 40% sequence homology to AMPs in the training set. Further characterization of the 11 most potent AMPs showed high efficacy against antibiotic-resistant, Gram-negative pathogens and demonstrated significant efficacy in lowering bacterial load by more than tenfold against a mouse model of bacterial lung infection. Our study showcases the potential of machine learning approaches for mining functional peptides from metagenome data and accelerating the discovery of promising AMP candidate molecules for in-depth investigations.

摘要

人类肠道微生物组编码了大量的抗菌肽 (AMPs),但 AMP 的短长度给计算预测带来了挑战。在这里,我们结合了多种自然语言处理神经网络模型,包括 LSTM、Attention 和 BERT,形成了一个从人类肠道微生物组数据中识别候选 AMP 的统一管道。在确定的 2349 个候选 AMP 序列中,有 216 个经过化学合成,其中 181 个具有抗菌活性(阳性率>83%)。这些肽的大多数与训练集中的 AMP 序列的同源性小于 40%。对 11 种最有效的 AMP 的进一步表征表明,它们对耐抗生素的革兰氏阴性病原体具有很高的疗效,并在细菌肺部感染的小鼠模型中显示出了将细菌载量降低十倍以上的显著疗效。我们的研究展示了机器学习方法从宏基因组数据中挖掘功能肽的潜力,并加速了有前途的 AMP 候选分子的发现,以进行深入研究。

相似文献

[1]
Identification of antimicrobial peptides from the human gut microbiome using deep learning.

Nat Biotechnol. 2022-6

[2]
Designing antimicrobial peptides using deep learning and molecular dynamic simulations.

Brief Bioinform. 2023-3-19

[3]
Discovery of antimicrobial peptides in the global microbiome with machine learning.

Cell. 2024-7-11

[4]
AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.

Protein Sci. 2023-1

[5]
Discovery of AMPs from random peptides via deep learning-based model and biological activity validation.

Eur J Med Chem. 2024-11-5

[6]
Antimicrobial Peptides From the Gut Microbiome of the Centenarians: Diversification of Biosynthesis and Youthful Development of Resistance Genes.

J Gerontol A Biol Sci Med Sci. 2024-11-1

[7]
An Intestinal Bacillus velezensis Isolate Displays Broad-Spectrum Antibacterial Activity and Prevents Infection of Both Gram-Positive and Gram-Negative Pathogens .

J Bacteriol. 2023-6-27

[8]
iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.

Brief Bioinform. 2023-7-20

[9]
A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against using Multi-Branch-CNN and Attention.

mSystems. 2023-8-31

[10]
AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens.

BMC Genomics. 2022-1-25

引用本文的文献

[1]
Potential Antiphotoaging Effect of Human Cathelicidin LL-37 Fragments and KR-12 Analogs on UVB-Induced HaCaT Cells and UVA-Induced HDF Cells.

ACS Omega. 2025-8-12

[2]
Human gut microbiota-derived antimicrobials against Salmonella Typhi: diversity, mechanisms, and therapeutic potential.

Arch Microbiol. 2025-8-28

[3]
Reusability Report: evaluating the performance of a meta-learning foundation model on predicting the antibacterial activity of natural products.

Res Sq. 2025-8-12

[4]
Deep learning reveals antibiotics in the archaeal proteome.

Nat Microbiol. 2025-8-12

[5]
ShortStop: a machine learning framework for microprotein discovery.

BMC Methods. 2025

[6]
Credible inferences in microbiome research: ensuring rigour, reproducibility and relevance in the era of AI.

Nat Rev Gastroenterol Hepatol. 2025-7-31

[7]
Polypeptides synthesized by common bacteria in the human gut improve rodent metabolism.

Nat Microbiol. 2025-8

[8]
In Silico Discovery and Sensory Validation of Umami Peptides in Fermented Sausages: A Study Integrating Deep Learning and Molecular Modeling.

Foods. 2025-7-9

[9]
Progress and gaps in antimicrobial resistance research within One Health sectors in China: a systematic analysis.

Sci China Life Sci. 2025-7-16

[10]
Ultra-sensitive metaproteomics redefines the dark metaproteome, uncovering host-microbiome interactions and drug targets in intestinal diseases.

Nat Commun. 2025-7-18

本文引用的文献

[1]
Deep Learning for Novel Antimicrobial Peptide Design.

Biomolecules. 2021-3-22

[2]
AMPGAN v2: Machine Learning-Guided Design of Antimicrobial Peptides.

J Chem Inf Model. 2021-5-24

[3]
Rediscovery of antimicrobial peptides as therapeutic agents.

J Microbiol. 2021-2

[4]
Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.

Genes (Basel). 2021-1-21

[5]
Emerging peptide antibiotics with therapeutic potential.

Med Drug Discov. 2021-3

[6]
Macrel: antimicrobial peptide screening in genomes and metagenomes.

PeerJ. 2020-12-18

[7]
A Nosocomial Respiratory Infection Outbreak of Carbapenem-Resistant ST131 With Multiple Transmissible Carrying Plasmids.

Front Microbiol. 2020-9-11

[8]
Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C.

Nat Commun. 2020-9-1

[9]
Antimicrobial peptides: Application informed by evolution.

Science. 2020-5-1

[10]
A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria.

Cell Host Microbe. 2020-6-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索