Trepka Ethan, Spitmaan Mehran, Qi Xue-Lian, Constantinidis Christos, Soltani Alireza
bioRxiv. 2023 Sep 1:2023.09.01.555857. doi: 10.1101/2023.09.01.555857.
Cortical neurons exhibit multiple timescales related to dynamics of spontaneous fluctuations (intrinsic timescales) and response to task events (seasonal timescales) in addition to selectivity to task-relevant signals. These timescales increase systematically across the cortical hierarchy, e.g., from parietal to prefrontal and cingulate cortex, pointing to their role in cortical computations. It is currently unknown whether these timescales depend on training in a specific task and/or are an inherent property of neurons, and whether more fine-grained hierarchies of timescales exist within specific cortical regions. To address these questions, we analyzed single-cell recordings within five subregions of the prefrontal cortex (PFC) of male macaques before and after training on a working-memory task. We found fine-grained but opposite gradients of intrinsic and seasonal timescales that mainly appeared after training. Intrinsic timescales decreased whereas seasonal timescales increased from posterior to anterior subregions within both dorsal and ventral PFC. Moreover, training was accompanied by increases in proportions of neurons that exhibited intrinsic and seasonal timescales. These effects were comparable to the emergence of response selectivity due to training. Finally, task selectivity accompanied opposite neural dynamics such that neurons with task-relevant selectivity exhibited longer intrinsic and shorter seasonal timescales. Notably, neurons with longer intrinsic and shorter seasonal timescales exhibited superior population-level coding, but these advantages extended to the delay period mainly after training. Together, our results provide evidence for plastic, fine-grained gradients of timescales within PFC that can influence both single-cell and population coding, pointing to the importance of these timescales in understanding cognition.
Recent studies have demonstrated that neural responses exhibit dynamics with different timescales that follow a certain order or hierarchy across cortical areas. While the hierarchy of timescales is consistent across different tasks, it is unknown if these timescales emerge only after training or if they represent inherent properties of neurons. To answer this question, we estimated multiple timescales in neural response across five subregions of the monkeys' lateral prefrontal cortex before and after training on a working-memory task. Our results provide evidence for fine-grained gradients related to certain neural dynamics. Moreover, we show that these timescales depend on and can be modulated by training in a cognitive task, and contribute to encoding of task-relevant information at single-cell and population levels.
除了对任务相关信号的选择性外,皮层神经元还表现出与自发波动动力学(内在时间尺度)和对任务事件的反应(季节性时间尺度)相关的多个时间尺度。这些时间尺度在整个皮层层次结构中系统性增加,例如从顶叶到前额叶和扣带回皮层,表明它们在皮层计算中的作用。目前尚不清楚这些时间尺度是否依赖于特定任务的训练和/或是否是神经元的固有属性,以及在特定皮层区域内是否存在更精细的时间尺度层次结构。为了解决这些问题,我们分析了雄性猕猴在工作记忆任务训练前后前额叶皮层(PFC)五个子区域内的单细胞记录。我们发现了内在和季节性时间尺度的精细但相反的梯度,主要出现在训练后。在背侧和腹侧PFC内,从后到前的子区域,内在时间尺度下降而季节性时间尺度增加。此外,训练伴随着表现出内在和季节性时间尺度的神经元比例增加。这些效应与训练引起的反应选择性的出现相当。最后,任务选择性伴随着相反的神经动力学,使得具有任务相关选择性的神经元表现出更长的内在时间尺度和更短的季节性时间尺度。值得注意的是,具有更长内在时间尺度和更短季节性时间尺度的神经元表现出更好的群体水平编码,但这些优势主要在训练后的延迟期才扩展。总之,我们的结果为PFC内时间尺度的可塑性、精细梯度提供了证据,这些梯度可以影响单细胞和群体编码,表明这些时间尺度在理解认知中的重要性。
最近的研究表明,神经反应表现出具有不同时间尺度的动力学,这些动力学在不同皮层区域遵循一定的顺序或层次结构。虽然时间尺度的层次结构在不同任务中是一致的,但尚不清楚这些时间尺度是仅在训练后出现还是代表神经元的固有属性。为了回答这个问题,我们在猴子外侧前额叶皮层的五个子区域内,在工作记忆任务训练前后估计了神经反应的多个时间尺度。我们的结果为与某些神经动力学相关的精细梯度提供了证据。此外,我们表明这些时间尺度依赖于认知任务的训练并可以被其调节,并有助于在单细胞和群体水平上对任务相关信息进行编码。