Suppr超能文献

前额叶皮层在训练后出现非线性混合选择性。

Emergence of Nonlinear Mixed Selectivity in Prefrontal Cortex after Training.

机构信息

Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235.

出版信息

J Neurosci. 2021 Sep 1;41(35):7420-7434. doi: 10.1523/JNEUROSCI.2814-20.2021. Epub 2021 Jul 22.

Abstract

Neurons in the PFC are typically activated by different cognitive tasks, and also by different stimuli and abstract variables within these tasks. A single neuron's selectivity for a given stimulus dimension often changes depending on its context, a phenomenon known as nonlinear mixed selectivity (NMS). It has previously been hypothesized that NMS emerges as a result of training to perform tasks in different contexts. We tested this hypothesis directly by examining the neuronal responses of different PFC areas before and after male monkeys were trained to perform different working memory tasks involving visual stimulus locations and/or shapes. We found that training induces a modest increase in the proportion of PFC neurons with NMS exclusively for spatial working memory, but not for shape working memory tasks, with area 9/46 undergoing the most significant increase in NMS cell proportion. We also found that increased working memory task complexity, in the form of simultaneously storing location and shape combinations, does not increase the degree of NMS for stimulus shape with other task variables. Lastly, in contrast to the previous studies, we did not find evidence that NMS is predictive of task performance. Our results thus provide critical insights on the representation of stimuli and task information in neuronal populations, in working memory. How multiple types of information are represented in working memory remains a complex computational problem. It has been hypothesized that nonlinear mixed selectivity allows neurons to efficiently encode multiple stimuli in different contexts, after subjects have been trained in complex tasks. Our analysis of prefrontal recordings obtained before and after training monkeys to perform working memory tasks only partially agreed with this prediction, in that nonlinear mixed selectivity emerged for spatial but not shape information, and mostly in mid-dorsal PFC. Nonlinear mixed selectivity also displayed little modulation across either task complexity or correct performance. These results point to other mechanisms, in addition to nonlinear mixed selectivity, representing complex information about stimulus and task context in neuronal activity.

摘要

前额叶皮层中的神经元通常由不同的认知任务激活,也由这些任务中的不同刺激和抽象变量激活。一个神经元对特定刺激维度的选择性通常会因其所处的上下文而发生变化,这种现象被称为非线性混合选择性(NMS)。之前有假说认为,NMS 是由于在不同的背景下进行任务训练而产生的。我们通过检查雄性猕猴在接受不同涉及视觉刺激位置和/或形状的工作记忆任务训练前后不同前额叶皮层区域的神经元反应,直接检验了这一假说。我们发现,训练会适度增加具有 NMS 的前额叶皮层神经元的比例,这仅适用于空间工作记忆任务,但不适用于形状工作记忆任务,其中 9/46 区的 NMS 细胞比例增加最为显著。我们还发现,增加工作记忆任务的复杂性,即同时存储位置和形状组合,不会增加其他任务变量下刺激形状的 NMS 程度。最后,与之前的研究不同,我们没有发现 NMS 可预测任务表现的证据。因此,我们的研究结果为工作记忆中神经元群体对刺激和任务信息的表示提供了重要的见解。在工作记忆中,多种类型的信息是如何表示的仍然是一个复杂的计算问题。已经有假说认为,在经过复杂任务的训练后,非线性混合选择性允许神经元在不同的背景下高效地对多个刺激进行编码。我们对猕猴在执行工作记忆任务之前和之后的前额叶皮层记录进行的分析,仅部分符合这一预测,即 NMS 出现在空间信息中,但不出现在形状信息中,主要出现在中背侧前额叶皮层。NMS 也几乎没有在任务复杂性或正确表现方面发生调制。这些结果表明,除了非线性混合选择性之外,还有其他机制可以在神经元活动中表示关于刺激和任务背景的复杂信息。

相似文献

1
Emergence of Nonlinear Mixed Selectivity in Prefrontal Cortex after Training.
J Neurosci. 2021 Sep 1;41(35):7420-7434. doi: 10.1523/JNEUROSCI.2814-20.2021. Epub 2021 Jul 22.
2
More Prominent Nonlinear Mixed Selectivity in the Dorsolateral Prefrontal than Posterior Parietal Cortex.
eNeuro. 2022 Apr 26;9(2). doi: 10.1523/ENEURO.0517-21.2022. Print 2022 Mar-Apr.
3
Changes in prefrontal neuronal activity after learning to perform a spatial working memory task.
Cereb Cortex. 2011 Dec;21(12):2722-32. doi: 10.1093/cercor/bhr058. Epub 2011 Apr 28.
4
Stimulus selectivity in dorsal and ventral prefrontal cortex after training in working memory tasks.
J Neurosci. 2011 Apr 27;31(17):6266-76. doi: 10.1523/JNEUROSCI.6798-10.2011.
5
Dynamic shifts of visual and saccadic signals in prefrontal cortical regions 8Ar and FEF.
J Neurophysiol. 2020 Dec 1;124(6):1774-1791. doi: 10.1152/jn.00669.2019. Epub 2020 Oct 7.
6
The Contribution of AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in Working Memory.
J Neurosci. 2020 Mar 18;40(12):2458-2470. doi: 10.1523/JNEUROSCI.2121-19.2020. Epub 2020 Feb 12.
7
Encoding of Serial Order in Working Memory: Neuronal Activity in Motor, Premotor, and Prefrontal Cortex during a Memory Scanning Task.
J Neurosci. 2018 May 23;38(21):4912-4933. doi: 10.1523/JNEUROSCI.3294-17.2018. Epub 2018 Apr 30.
8
Drifts in Prefrontal and Parietal Neuronal Activity Influence Working Memory Judgments.
Cereb Cortex. 2021 Jul 5;31(8):3650-3664. doi: 10.1093/cercor/bhab038.
9
Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.
J Neurosci. 2017 Jun 21;37(25):6098-6112. doi: 10.1523/JNEUROSCI.3903-16.2017. Epub 2017 May 24.
10
Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.
Brain Res. 2016 Jun 1;1640(Pt B):314-27. doi: 10.1016/j.brainres.2016.02.010. Epub 2016 Feb 10.

引用本文的文献

1
Domain general frontoparietal regions show modality-dependent coding of auditory and visual rules.
Imaging Neurosci (Camb). 2025 Jun 16;3. doi: 10.1162/IMAG.a.29. eCollection 2025.
2
Near-random connections support top-down feature-based attentional modulations in early sensory cortex.
PLoS Comput Biol. 2025 Aug 12;21(8):e1013396. doi: 10.1371/journal.pcbi.1013396. eCollection 2025 Aug.
3
Asymmetric representation of symmetric semantic information in the human brain.
Neuroimage Rep. 2025 Feb 9;5(1):100243. doi: 10.1016/j.ynirp.2025.100243. eCollection 2025 Mar.
4
Using fMRI to examine nonlinear mixed selectivity tuning to task and category in the human brain.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00354. Epub 2024 Nov 8.
5
Unraveling the roles of spatial working memory sustained and selective neurons in prefrontal cortex.
Commun Biol. 2025 May 20;8(1):767. doi: 10.1038/s42003-025-08211-8.
6
A boundedly rational model for category learning.
Front Psychol. 2024 Dec 9;15:1477514. doi: 10.3389/fpsyg.2024.1477514. eCollection 2024.
8
Lateral prefrontal cortex controls interplay between working memory and actions.
bioRxiv. 2024 Sep 18:2024.09.17.613601. doi: 10.1101/2024.09.17.613601.
9
Local organization of spatial and shape information in the primate prefrontal cortex.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae384.
10
Prefrontal neuronal dynamics in the absence of task execution.
Nat Commun. 2024 Aug 6;15(1):6694. doi: 10.1038/s41467-024-50717-y.

本文引用的文献

1
Low-dimensional dynamics for working memory and time encoding.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23021-23032. doi: 10.1073/pnas.1915984117. Epub 2020 Aug 28.
2
Nonlinear mixed selectivity supports reliable neural computation.
PLoS Comput Biol. 2020 Feb 18;16(2):e1007544. doi: 10.1371/journal.pcbi.1007544. eCollection 2020 Feb.
3
Anterior-posterior gradient of plasticity in primate prefrontal cortex.
Nat Commun. 2018 Sep 17;9(1):3790. doi: 10.1038/s41467-018-06226-w.
4
Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex.
Nat Commun. 2018 Aug 29;9(1):3498. doi: 10.1038/s41467-018-05873-3.
5
Representation of Spatial and Feature Information in the Monkey Dorsal and Ventral Prefrontal Cortex.
Front Integr Neurosci. 2018 Aug 7;12:31. doi: 10.3389/fnint.2018.00031. eCollection 2018.
6
Estimating the functional dimensionality of neural representations.
Neuroimage. 2018 Oct 1;179:51-62. doi: 10.1016/j.neuroimage.2018.06.015. Epub 2018 Jun 7.
7
Mixed selectivity morphs population codes in prefrontal cortex.
Nat Neurosci. 2017 Dec;20(12):1770-1779. doi: 10.1038/s41593-017-0003-2. Epub 2017 Oct 9.
8
Alpha-Band Activity Reveals Spontaneous Representations of Spatial Position in Visual Working Memory.
Curr Biol. 2017 Oct 23;27(20):3216-3223.e6. doi: 10.1016/j.cub.2017.09.031. Epub 2017 Oct 12.
9
Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.
J Neurosci. 2017 Nov 8;37(45):11021-11036. doi: 10.1523/JNEUROSCI.1222-17.2017. Epub 2017 Oct 6.
10
The neuroscience of working memory capacity and training.
Nat Rev Neurosci. 2016 Jul;17(7):438-49. doi: 10.1038/nrn.2016.43. Epub 2016 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验