Suppr超能文献

跨皮质的神经动力学的多个时间尺度和与任务相关的信号的整合。

Multiple timescales of neural dynamics and integration of task-relevant signals across cortex.

机构信息

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755.

Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22522-22531. doi: 10.1073/pnas.2005993117. Epub 2020 Aug 24.

Abstract

A long-lasting challenge in neuroscience has been to find a set of principles that could be used to organize the brain into distinct areas with specific functions. Recent studies have proposed the orderly progression in the time constants of neural dynamics as an organizational principle of cortical computations. However, relationships between these timescales and their dependence on response properties of individual neurons are unknown, making it impossible to determine how mechanisms underlying such a computational principle are related to other aspects of neural processing. Here, we developed a comprehensive method to simultaneously estimate multiple timescales in neuronal dynamics and integration of task-relevant signals along with selectivity to those signals. By applying our method to neural and behavioral data during a dynamic decision-making task, we found that most neurons exhibited multiple timescales in their response, which consistently increased from parietal to prefrontal and cingulate cortex. While predicting rates of behavioral adjustments, these timescales were not correlated across individual neurons in any cortical area, resulting in independent parallel hierarchies of timescales. Additionally, none of these timescales depended on selectivity to task-relevant signals. Our results not only suggest the existence of multiple canonical mechanisms for increasing timescales of neural dynamics across cortex but also point to additional mechanisms that allow decorrelation of these timescales to enable more flexibility.

摘要

神经科学长期面临的一个挑战是,找到一套原则,以便将大脑组织成具有特定功能的不同区域。最近的研究提出,神经动力学的时间常数有序进展是皮质计算的组织原则。然而,这些时间尺度之间的关系及其对单个神经元反应特性的依赖性尚不清楚,这使得无法确定这种计算原理背后的机制与神经处理的其他方面有何关系。在这里,我们开发了一种全面的方法,可以同时估计神经元动力学中的多个时间尺度以及与这些信号相关的任务相关信号的整合情况。通过将我们的方法应用于动态决策任务期间的神经和行为数据,我们发现大多数神经元在其反应中表现出多个时间尺度,这些时间尺度从前顶叶到前额叶和扣带回皮质一致增加。虽然可以预测行为调整的速度,但在任何皮质区域中,这些时间尺度在单个神经元之间都没有相关性,导致时间尺度的独立平行层次结构。此外,这些时间尺度都不依赖于与任务相关信号的选择性。我们的研究结果不仅表明存在多个跨皮质增加神经动力学时间尺度的典型机制,而且还表明存在允许这些时间尺度去相关的其他机制,从而提高灵活性。

相似文献

8
A Diversity of Intrinsic Timescales Underlie Neural Computations.内在时间尺度的多样性是神经计算的基础。
Front Neural Circuits. 2020 Dec 21;14:615626. doi: 10.3389/fncir.2020.615626. eCollection 2020.

引用本文的文献

2
Computational models of peripersonal space representation.个人周边空间表征的计算模型。
Phys Life Rev. 2025 Sep;54:128-140. doi: 10.1016/j.plrev.2025.07.002. Epub 2025 Jul 3.
3
Estimating fMRI Timescale Maps.估计功能磁共振成像时间尺度图。
bioRxiv. 2025 May 21:2025.04.23.650300. doi: 10.1101/2025.04.23.650300.

本文引用的文献

1
Macroscopic gradients of synaptic excitation and inhibition in the neocortex.大脑皮层中突触兴奋和抑制的宏观梯度。
Nat Rev Neurosci. 2020 Mar;21(3):169-178. doi: 10.1038/s41583-020-0262-x. Epub 2020 Feb 6.
2
Flexible combination of reward information across primates.灵长类动物的奖励信息的灵活组合。
Nat Hum Behav. 2019 Nov;3(11):1215-1224. doi: 10.1038/s41562-019-0714-3. Epub 2019 Sep 9.
3
Temporal signals underlying a cognitive process in the dorsal premotor cortex.背侧前运动皮层中认知过程的时间信号。
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7523-7532. doi: 10.1073/pnas.1820474116. Epub 2019 Mar 27.
10
The Role of the Lateral Intraparietal Area in (the Study of) Decision Making.顶内叶外侧区在决策研究中的作用
Annu Rev Neurosci. 2017 Jul 25;40:349-372. doi: 10.1146/annurev-neuro-072116-031508.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验