Suppr超能文献

生成类透视放射图像作为介入放射学深度学习的替代数据集。

Generation of fluoroscopy-alike radiographs as alternative datasets for deep learning in interventional radiology.

机构信息

Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.

Division of Radiological Sciences, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.

出版信息

Phys Eng Sci Med. 2023 Dec;46(4):1535-1552. doi: 10.1007/s13246-023-01317-5. Epub 2023 Sep 11.

Abstract

In fluoroscopy-guided interventions (FGIs), obtaining large quantities of labelled data for deep learning (DL) can be difficult. Synthetic labelled data can serve as an alternative, generated via pseudo 2D projections of CT volumetric data. However, contrasted vessels have low visibility in simple 2D projections of contrasted CT data. To overcome this, we propose an alternative method to generate fluoroscopy-like radiographs from contrasted head CT Angiography (CTA) volumetric data. The technique involves segmentation of brain tissue, bone, and contrasted vessels from CTA volumetric data, followed by an algorithm to adjust HU values, and finally, a standard ray-based projection is applied to generate the 2D image. The resulting synthetic images were compared to clinical fluoroscopy images for perceptual similarity and subject contrast measurements. Good perceptual similarity was demonstrated on vessel-enhanced synthetic images as compared to the clinical fluoroscopic images. Statistical tests of equivalence show that enhanced synthetic and clinical images have statistically equivalent mean subject contrast within 25% bounds. Furthermore, validation experiments confirmed that the proposed method for generating synthetic images improved the performance of DL models in certain regression tasks, such as localizing anatomical landmarks in clinical fluoroscopy images. Through enhanced pseudo 2D projection of CTA volume data, synthetic images with similar features to real clinical fluoroscopic images can be generated. The use of synthetic images as an alternative source for DL datasets represents a potential solution to the application of DL in FGIs procedures.

摘要

在透视引导介入(FGI)中,获取大量用于深度学习(DL)的标记数据可能具有挑战性。合成标记数据可以作为替代方法,通过 CT 容积数据的伪 2D 投影生成。然而,在对比 CT 数据的简单 2D 投影中,对比血管的可见度较低。为了克服这一问题,我们提出了一种从对比头部 CT 血管造影(CTA)容积数据生成类似透视射线照片的替代方法。该技术涉及从 CTA 容积数据中分割脑组织、骨骼和对比血管,然后应用算法调整 HU 值,最后应用标准射线投影生成 2D 图像。将生成的合成图像与临床透视图像进行比较,以评估感知相似性和主体对比度测量。与临床透视图像相比,血管增强的合成图像表现出良好的感知相似性。等效性统计检验表明,增强后的合成和临床图像在 25%的界限内具有统计学等效的平均主体对比度。此外,验证实验证实,生成合成图像的方法可以提高 DL 模型在某些回归任务中的性能,例如在临床透视图像中定位解剖学标志。通过增强 CTA 体积数据的伪 2D 投影,可以生成具有与真实临床透视图像相似特征的合成图像。将合成图像用作 DL 数据集的替代来源是在 FGI 程序中应用 DL 的潜在解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验