Pallumeera Mustaqueem, Giang Jonathan C, Singh Ramanpreet, Pracha Nooruddin S, Makary Mina S
The Ohio State University College of Medicine, Columbus, OH 43210, USA.
Northeast Ohio Medical University, Rootstown, OH 44272, USA.
Cancers (Basel). 2025 Apr 30;17(9):1510. doi: 10.3390/cancers17091510.
Artificial intelligence (AI) is revolutionizing cancer imaging, enhancing screening, diagnosis, and treatment options for clinicians. AI-driven applications, particularly deep learning and machine learning, excel in risk assessment, tumor detection, classification, and predictive treatment prognosis. Machine learning algorithms, especially deep learning frameworks, improve lesion characterization and automated segmentation, leading to enhanced radiomic feature extraction and delineation. Radiomics, which quantifies imaging features, offers personalized treatment response predictions across various imaging modalities. AI models also facilitate technological improvements in non-diagnostic tasks, such as image optimization and automated medical reporting. Despite advancements, challenges persist in integrating AI into healthcare, tracking accurate data, and ensuring patient privacy. Validation through clinician input and multi-institutional studies is essential for patient safety and model generalizability. This requires support from radiologists worldwide and consideration of complex regulatory processes. Future directions include elaborating on existing optimizations, integrating advanced AI techniques, improving patient-centric medicine, and expanding healthcare accessibility. AI can enhance cancer imaging, optimizing precision medicine and improving patient outcomes. Ongoing multidisciplinary collaboration between radiologists, oncologists, software developers, and regulatory bodies is crucial for AI's growing role in clinical oncology. This review aims to provide an overview of the applications of AI in oncologic imaging while also discussing their limitations.
人工智能(AI)正在彻底改变癌症成像技术,为临床医生提供了更多的筛查、诊断和治疗选择。人工智能驱动的应用,特别是深度学习和机器学习,在风险评估、肿瘤检测、分类和预测性治疗预后方面表现出色。机器学习算法,尤其是深度学习框架,改善了病变特征描述和自动分割,从而增强了影像组学特征提取和描绘。影像组学通过量化成像特征,可在各种成像模式下提供个性化的治疗反应预测。人工智能模型还促进了非诊断任务的技术改进,如图像优化和自动医疗报告。尽管取得了进展,但在将人工智能整合到医疗保健中、跟踪准确数据以及确保患者隐私方面仍存在挑战。通过临床医生的参与和多机构研究进行验证对于患者安全和模型的通用性至关重要。这需要全球放射科医生的支持以及对复杂监管流程的考量。未来的发展方向包括详细阐述现有的优化方法、整合先进的人工智能技术、改善以患者为中心的医疗以及扩大医疗保健的可及性。人工智能可以增强癌症成像,优化精准医疗并改善患者预后。放射科医生、肿瘤学家、软件开发人员和监管机构之间持续的多学科合作对于人工智能在临床肿瘤学中日益重要的作用至关重要。本综述旨在概述人工智能在肿瘤成像中的应用,同时也讨论其局限性。