Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin, USA.
Microbiology Doctoral Training Program, University of Wisconsin-Madison , Madison, Wisconsin, USA.
J Bacteriol. 2023 Sep 26;205(9):e0015623. doi: 10.1128/jb.00156-23. Epub 2023 Sep 12.
The first step in the process of bacterial natural transformation is DNA capture. Although long hypothesized based on genetics and functional experiments, the pilus structure responsible for initial DNA binding had not yet been visualized for . Here, we visualize functional competence pili in using fluorophore-conjugated maleimide labeling in conjunction with epifluorescence microscopy. In strains that produce pilin monomers within tenfold of wild-type levels, the median length of detectable pili is 300 nm. These pili are retractile and associate with DNA. The analysis of pilus distribution at the cell surface reveals that they are predominantly located along the long axis of the cell. The distribution is consistent with localization of proteins associated with subsequent transformation steps, DNA binding, and DNA translocation in the cytosol. These data suggest a distributed model for transformation machinery, in which initial steps of DNA capture occur throughout the long axis of the cell and subsequent steps may also occur away from the cell poles. IMPORTANCE This work provides novel visual evidence for DNA translocation across the cell wall during natural competence, an essential step in the natural transformation process. Our data demonstrate the existence of natural competence-associated retractile pili that can bind exogenous DNA. Furthermore, we show that pilus biogenesis occurs throughout the cell long axis. These data strongly support DNA translocation occurring all along the lateral cell wall during natural competence, wherein pili are produced, bind to free DNA in the extracellular space, and finally retract to pull the bound DNA through the gap in the cell wall created during pilus biogenesis.
细菌自然转化过程的第一步是 DNA 捕获。尽管基于遗传学和功能实验长期以来一直假设存在这种情况,但负责初始 DNA 结合的菌毛结构尚未被可视化。在这里,我们使用荧光染料标记的马来酰亚胺缀合,结合荧光显微镜,可视化了 中的功能能力菌毛。在产生比野生型水平高出十倍的菌毛单体的菌株中,可检测到的菌毛的中位数长度为 300nm。这些菌毛可缩回并与 DNA 结合。在细胞表面分析菌毛的分布情况表明,它们主要位于细胞的长轴上。这种分布与随后转化步骤、DNA 结合和细胞质中 DNA 易位相关联的蛋白质的定位一致。这些数据表明 转化机制呈分布式,DNA 捕获的初始步骤发生在整个细胞长轴上,随后的步骤也可能发生在远离细胞极的位置。 重要性 这项工作为 自然转化过程中细胞壁内 DNA 易位提供了新的视觉证据,这是自然转化过程中的关键步骤。我们的数据表明存在与自然转化能力相关的可缩回菌毛,可结合外源 DNA。此外,我们还表明菌毛生物发生发生在整个细胞长轴上。这些数据强烈支持自然转化过程中 DNA 沿侧向细胞壁发生易位,在此过程中菌毛产生,与细胞外空间中的游离 DNA 结合,最后缩回菌毛生物发生过程中在细胞壁上形成的间隙,将结合的 DNA 拉过。