Department of Human Genetics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009 Marseille, France.
Proc Natl Acad Sci U S A. 2023 Sep 19;120(38):e2310914120. doi: 10.1073/pnas.2310914120. Epub 2023 Sep 11.
Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome ( 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.
细胞外囊泡 (EVs) 是介导健康和疾病中细胞间通讯的膜限制细胞器。EVs 具有很高的医学价值,但由于我们对控制 EV 生物学的分子机制的了解有限,其在诊断或治疗中的合理应用受到限制。在这里,我们测试了 PDZ 蛋白是否可能代表重要的 EV 调节剂,PDZ 蛋白是支持信号转导复合物形成、运输和功能的分子支架,与多细胞生物共同进化。我们揭示了 PDZ 蛋白质组(人类中的 150 种蛋白质)与四跨膜蛋白 CD9、CD63 和 CD81 建立了直接相互作用的离散数量,这些蛋白是众所周知的 EV 成分。引人注目的是,PDZ 蛋白与广泛存在的膜蛋白 syndecans (SDCs) 相互作用更为广泛,我们之前证明 SDCs 在 EV 生物发生、加载和周转中具有重要作用。在功能丧失研究中测试了九种 PDZ 蛋白。我们记录了这些 PDZ 蛋白调节四跨膜蛋白和 SDCs,差异影响它们的稳态水平、亚细胞定位、代谢、内体出芽和在 EV 中的积累。重要的是,我们还表明 PDZ 蛋白控制细胞表面肝素硫酸盐的水平,该水平在 EV 捕获中起作用。总之,我们的研究确立了 SDCs、四跨膜蛋白和 PDZ 蛋白的广泛网络有助于 EV 的异质性和周转,突出了控制细胞内运输和细胞间通讯的分子框架的重要组成部分。