Suppr超能文献

内源性标记揭示突触前活性区的纳米级 RIM 簇。

Nanoscaled RIM clustering at presynaptic active zones revealed by endogenous tagging.

机构信息

https://ror.org/00fbnyb24 Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany.

Department of Neurology, Leipzig University Medical Center, Leipzig, Germany.

出版信息

Life Sci Alliance. 2023 Sep 11;6(12). doi: 10.26508/lsa.202302021. Print 2023 Dec.

Abstract

Chemical synaptic transmission involves neurotransmitter release from presynaptic active zones (AZs). The AZ protein Rab-3-interacting molecule (RIM) is important for normal Ca-triggered release. However, its precise localization within AZs of the glutamatergic neuromuscular junctions of remains elusive. We used CRISPR/Cas9-assisted genome engineering of the locus to incorporate small epitope tags for targeted super-resolution imaging. A V5-tag, derived from simian virus 5, and an HA-tag, derived from human influenza virus, were N-terminally fused to the RIM Zinc finger. Whereas both variants are expressed in co-localization with the core AZ scaffold Bruchpilot, electrophysiological characterization reveals that AP-evoked synaptic release is disturbed in rim but not in rim In addition, rim synapses show intact presynaptic homeostatic potentiation. Combining super-resolution localization microscopy and hierarchical clustering, we detect ∼10 RIM subclusters with ∼13 nm diameter per AZ that are compacted and increased in numbers in presynaptic homeostatic potentiation.

摘要

化学突触传递涉及神经递质从突触前活性区(AZ)释放。AZ 蛋白 Rab-3 相互作用分子(RIM)对于正常的 Ca 触发释放很重要。然而,其在谷氨酸能神经肌肉接头的 AZ 中的精确定位仍不清楚。我们使用 CRISPR/Cas9 辅助的基因组工程来修饰 基因座,以纳入用于靶向超分辨率成像的小表位标签。一个来自猿猴病毒 5 的 V5 标签和一个来自人类流感病毒的 HA 标签分别被 N 端融合到 RIM 的锌指上。虽然这两种变体都与核心 AZ 支架 Bruchpilot 共表达,但电生理特性表明,AP 诱发的突触释放在 rim 中受到干扰,而在 rim 中没有受到干扰。此外,rim 突触显示完整的突触前同型激活增强。通过结合超分辨率定位显微镜和层次聚类,我们检测到每个 AZ 有大约 10 个 RIM 亚簇,直径约为 13nm,在突触前同型激活增强时变得更加紧凑且数量增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de4d/10494931/f0fd9df05360/LSA-2023-02021_Fig1.jpg

相似文献

1
Nanoscaled RIM clustering at presynaptic active zones revealed by endogenous tagging.
Life Sci Alliance. 2023 Sep 11;6(12). doi: 10.26508/lsa.202302021. Print 2023 Dec.
2
Active zone compaction correlates with presynaptic homeostatic potentiation.
Cell Rep. 2021 Oct 5;37(1):109770. doi: 10.1016/j.celrep.2021.109770.
4
Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation.
Front Cell Neurosci. 2022 Dec 14;16:1074304. doi: 10.3389/fncel.2022.1074304. eCollection 2022.
5
Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis.
J Neurosci. 2020 Apr 1;40(14):2817-2827. doi: 10.1523/JNEUROSCI.2002-19.2020. Epub 2020 Mar 2.
6
RIM promotes calcium channel accumulation at active zones of the Drosophila neuromuscular junction.
J Neurosci. 2012 Nov 21;32(47):16586-96. doi: 10.1523/JNEUROSCI.0965-12.2012.
7
The human cognition-enhancing CORD7 mutation increases active zone number and synaptic release.
Brain. 2022 Nov 21;145(11):3787-3802. doi: 10.1093/brain/awac011.
10
RIMB-1/RIM-Binding Protein and UNC-10/RIM Redundantly Regulate Presynaptic Localization of the Voltage-Gated Calcium Channel in .
J Neurosci. 2019 Oct 30;39(44):8617-8631. doi: 10.1523/JNEUROSCI.0506-19.2019. Epub 2019 Sep 17.

引用本文的文献

1
Monoamine-induced diacylglycerol signaling rapidly accumulates Unc13 in nanoclusters for fast presynaptic potentiation.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2514151122. doi: 10.1073/pnas.2514151122. Epub 2025 Aug 20.
2
Distinct input-specific mechanisms enable presynaptic homeostatic plasticity.
Sci Adv. 2025 Feb 14;11(7):eadr0262. doi: 10.1126/sciadv.adr0262.
3
Distinct input-specific mechanisms enable presynaptic homeostatic plasticity.
bioRxiv. 2024 Sep 12:2024.09.10.612361. doi: 10.1101/2024.09.10.612361.
5
Versatile Endogenous Editing of GluRIIA in .
Cells. 2024 Feb 10;13(4):323. doi: 10.3390/cells13040323.

本文引用的文献

1
Molecular logic of synaptic diversity between Drosophila tonic and phasic motoneurons.
Neuron. 2023 Nov 15;111(22):3554-3569.e7. doi: 10.1016/j.neuron.2023.07.019. Epub 2023 Aug 22.
2
Physiologic and Nanoscale Distinctions Define Glutamatergic Synapses in Tonic vs Phasic Neurons.
J Neurosci. 2023 Jun 21;43(25):4598-4611. doi: 10.1523/JNEUROSCI.0046-23.2023. Epub 2023 May 23.
4
Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation.
Front Cell Neurosci. 2022 Dec 14;16:1074304. doi: 10.3389/fncel.2022.1074304. eCollection 2022.
6
A presynaptic phosphosignaling hub for lasting homeostatic plasticity.
Cell Rep. 2022 Apr 19;39(3):110696. doi: 10.1016/j.celrep.2022.110696.
7
The human cognition-enhancing CORD7 mutation increases active zone number and synaptic release.
Brain. 2022 Nov 21;145(11):3787-3802. doi: 10.1093/brain/awac011.
8
Transforming Rhodamine Dyes for (d)STORM Super-Resolution Microscopy via 1,3-Disubstituted Imidazolium Substitution.
Angew Chem Int Ed Engl. 2022 Feb 21;61(9):e202113612. doi: 10.1002/anie.202113612. Epub 2022 Jan 17.
9
Active zone compaction correlates with presynaptic homeostatic potentiation.
Cell Rep. 2021 Oct 5;37(1):109770. doi: 10.1016/j.celrep.2021.109770.
10
Vesicle Tethering on the Surface of Phase-Separated Active Zone Condensates.
Mol Cell. 2021 Jan 7;81(1):13-24.e7. doi: 10.1016/j.molcel.2020.10.029. Epub 2020 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验