Suppr超能文献

使用具有两个注意力机制模块的卷积神经网络有效自动检测前交叉韧带损伤。

Effective automatic detection of anterior cruciate ligament injury using convolutional neural network with two attention mechanism modules.

机构信息

Department of Minimally Invasive Surgery and Sports Medicine, The 2Nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.

Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.

出版信息

BMC Med Imaging. 2023 Sep 11;23(1):120. doi: 10.1186/s12880-023-01091-6.

Abstract

BACKGROUND

To develop a fully automated CNN detection system based on magnetic resonance imaging (MRI) for ACL injury, and to explore the feasibility of CNN for ACL injury detection on MRI images.

METHODS

Including 313 patients aged 16 - 65 years old, the raw data are 368 pieces with injured ACL and 100 pieces with intact ACL. By adding flipping, rotation, scaling and other methods to expand the data, the final data set is 630 pieces including 355 pieces of injured ACL and 275 pieces of intact ACL. Using the proposed CNN model with two attention mechanism modules, data sets are trained and tested with fivefold cross-validation.

RESULTS

The performance is evaluated using accuracy, precision, sensitivity, specificity and F1 score of our proposed CNN model, with results of 0.8063, 0.7741, 0.9268, 0.6509 and 0.8436. The average accuracy in the fivefold cross-validation is 0.8064. For our model, the average area under curves (AUC) for detecting injured ACL has results of 0.8886.

CONCLUSION

We propose an effective and automatic CNN model to detect ACL injury from MRI of human knees. This model can effectively help clinicians diagnose ACL injury, improving diagnostic efficiency and reducing misdiagnosis and missed diagnosis.

摘要

背景

开发一种基于磁共振成像(MRI)的完全自动化卷积神经网络(CNN)检测系统,用于 ACL 损伤,并探讨 CNN 在 MRI 图像上检测 ACL 损伤的可行性。

方法

纳入 313 例 16-65 岁患者,原始数据为 368 份 ACL 损伤和 100 份 ACL 完整的 MRI。通过添加翻转、旋转、缩放等方法对数据进行扩充,最终数据集为 630 份,包括 355 份 ACL 损伤和 275 份 ACL 完整的 MRI。使用具有两个注意力机制模块的建议 CNN 模型,对数据集进行五重交叉验证训练和测试。

结果

使用我们提出的 CNN 模型的准确性、精确性、敏感性、特异性和 F1 评分来评估性能,结果分别为 0.8063、0.7741、0.9268、0.6509 和 0.8436。五重交叉验证的平均准确率为 0.8064。对于我们的模型,检测 ACL 损伤的平均曲线下面积(AUC)为 0.8886。

结论

我们提出了一种有效的自动 CNN 模型,用于从人类膝关节的 MRI 中检测 ACL 损伤。该模型可以有效帮助临床医生诊断 ACL 损伤,提高诊断效率,减少误诊和漏诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad47/10494428/85e96740181a/12880_2023_1091_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验